设数列{An},{Bn}定义如下:.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 23:30:23
设数列{An},{Bn}定义如下:.
(n+1) = 2bn +3b(n-1)
The aux.equation
x^2-2x-3 =0
x = 3 or -1
let
bn = A3^n + B(-1)^n
b0 = A+B = 1 (1)
b1= 3A-B= 7 (2)
(1)+(2)
A=2
B=-1
bn = 2.3^n -(-1)^n
a(n+1) = an+2an
The aux.equation
x^2-x-2=0
x= 2 or -1
let
an = C.2^n +D(-1)^n
a0= C+D =1 (3)
a1=2C-D =1 (4)
(3)+(4)
C=2/3
D= 1/3
an = (2/3).2^n + (1/3)(-1)^n
an = bn
(2/3).2^n + (1/3)(-1)^n= 2.3^n -(-1)^n
2.3^n - (2/3).2^n = (4/3) (-1)^(n+1)
let
f(x) = 2.3^x - (2/3).2^x
f'(x) = 2.ln3 .3^x - (2/3) ln2 .2^x =0
2.ln3 .3^x = (2/3) ln2 .2^x
(2/3)^x = 3ln3/ln2
x = ln(3ln3/ln2)/ ln(2/3)
=-0.63
f(n) = 2.3^n - (2/3).2^n
min f(n) = f(0) = 2 -2/3 = 4/3
=> f(n)> 4/3 ( n>0)
(4/3) (-1)^(n+1) = 4/3 if n=1,3,5,..
= -4/3 if n=0,2,4,6,...
2.3^n - (2/3).2^n = (4/3) (-1)^(n+1)
only when n=0
除了a0 =b0,这两个数列没有其他相同
The aux.equation
x^2-2x-3 =0
x = 3 or -1
let
bn = A3^n + B(-1)^n
b0 = A+B = 1 (1)
b1= 3A-B= 7 (2)
(1)+(2)
A=2
B=-1
bn = 2.3^n -(-1)^n
a(n+1) = an+2an
The aux.equation
x^2-x-2=0
x= 2 or -1
let
an = C.2^n +D(-1)^n
a0= C+D =1 (3)
a1=2C-D =1 (4)
(3)+(4)
C=2/3
D= 1/3
an = (2/3).2^n + (1/3)(-1)^n
an = bn
(2/3).2^n + (1/3)(-1)^n= 2.3^n -(-1)^n
2.3^n - (2/3).2^n = (4/3) (-1)^(n+1)
let
f(x) = 2.3^x - (2/3).2^x
f'(x) = 2.ln3 .3^x - (2/3) ln2 .2^x =0
2.ln3 .3^x = (2/3) ln2 .2^x
(2/3)^x = 3ln3/ln2
x = ln(3ln3/ln2)/ ln(2/3)
=-0.63
f(n) = 2.3^n - (2/3).2^n
min f(n) = f(0) = 2 -2/3 = 4/3
=> f(n)> 4/3 ( n>0)
(4/3) (-1)^(n+1) = 4/3 if n=1,3,5,..
= -4/3 if n=0,2,4,6,...
2.3^n - (2/3).2^n = (4/3) (-1)^(n+1)
only when n=0
除了a0 =b0,这两个数列没有其他相同
设{an}与{bn}中一个是收敛数列,另一个是发散数列.证明{an±bn}是发散数列.
设bn=(an+1/an)^2求数列bn的前n项和Tn
求证极限:设数列{An},{Bn}均收敛,An=n(Bn-Bn-1),求证limAn = 0.
设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,
设数列{an},{bn},满足an=[lg(b1)+lg(b2)+...+lg(bn)]/n,证明{an}为等差数列的冲
设数列an为等差数列,数列bn为等比数列若a1
设数列{an}是首项为1000,公比为十分之一的等比数列,数列{bn}满足
设数列{an}{bn}均为等差数列,公差都不为0,无穷数列liman/bn=3,则无穷数列limb1+b2+...+bn
设数列an前n项和为Sn,且an+Sn=1,求an的通项公式 若数列bn满足b1=1且bn+1=bn+an,求数列bn通
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)/(2^n) (1) 设bn=an/n,求数列{bn
在数列{an}中,a1=1,an+1=[(n+1)/n]*an+2(n+1),设bn=an/n,(1)证明数列{bn}是
数列 an=2n-1 设bn=an/3^n 求和tn=b1+..bn?