作业帮 > 数学 > 作业

点O是三角形ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC中点D、E、F、G,依次连接起来,设DEF

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 16:16:18
点O是三角形ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC中点D、E、F、G,依次连接起来,设DEFG能构成四边形.(1)如图,当点O在△ABC内时,求证:四边形DEFG是平行四边形;(2)当点O在△ABC外时,(1)的结论是否成立?(画出图形,说明理由;)(3)若四边形DEFG是菱形,则点O的位置应满足什么条件?试说明理由.
点O是三角形ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC中点D、E、F、G,依次连接起来,设DEF
第一个问题:
∵D、G分别是AB、AC的中点,∴DG是△ABC的中位线,∴DG∥BC、DG=BC/2.
∵E、F分别是OB、OC的中点,∴EF是△OBC的中位线,∴EF∥BC、EF=BC/2.
由DG∥BC、EF∥BC,得:DG∥EF.
由DG=BC/2、EF=BC/2,得:DG=EF.
由DG∥EF、DG=EF,得:DEFG是平行四边形.
第二个问题:
结论是成立的.即此时DEFG也是平行四边形.[证法同上]
第三个问题:
∵D、E分别是AB、OB的中点,∴DE=OA/2,又DG=BC/2,而DEFG是菱形,∴DE=DG,
∴OA=BC.
∴当OA=BC时,DEFG是菱形.