已知函数f(x)=x^2+ax+b,a,b为常数,集合A={x属于R|f(x)=x},B={X属于R|f(f(x))=x
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 13:49:18
已知函数f(x)=x^2+ax+b,a,b为常数,集合A={x属于R|f(x)=x},B={X属于R|f(f(x))=x}
设函数f(x)=x^2+ax+b(a,b属于R),集合A={x|x=f(x)},B={x|x=f[f(x)]}.(1)证明A是B的子集.(2)当A={-1,3}时,求B
【解】
(1) A:即为f(x)=x的根.
B:即为f(f(x))=x的根.
若m为A的元素,则有f(m)=m,此时,f(f(m))=f(m)=m,因此a也是B中的元素.所以A中的元素都是B中的元素,即A是B的子集.
(2)
x=-1时:f(-1)=1-a+b=-1;
x=3时:f(3)=9+3a+b=3;
于是解二元一次方程组得:
a=-1,b=-3.
因而确定函数f(x)=x^2-x-3
则f(f(x))=(x^2-x-3)^2-(x^2-x-3)-3
=x^4-2x^3-6x^2+7x+9
令f(f(x))=x
则x^4-2x^3-6x^2+6x+9=0
分解因式(x+1)(x-3)(x^2-3)=0
即(x+1)(x-3)(x+√3)(x-√3)=0
所以有四个x的解属于集合B.
B={1,-3,√3,-√3}
【解】
(1) A:即为f(x)=x的根.
B:即为f(f(x))=x的根.
若m为A的元素,则有f(m)=m,此时,f(f(m))=f(m)=m,因此a也是B中的元素.所以A中的元素都是B中的元素,即A是B的子集.
(2)
x=-1时:f(-1)=1-a+b=-1;
x=3时:f(3)=9+3a+b=3;
于是解二元一次方程组得:
a=-1,b=-3.
因而确定函数f(x)=x^2-x-3
则f(f(x))=(x^2-x-3)^2-(x^2-x-3)-3
=x^4-2x^3-6x^2+7x+9
令f(f(x))=x
则x^4-2x^3-6x^2+6x+9=0
分解因式(x+1)(x-3)(x^2-3)=0
即(x+1)(x-3)(x+√3)(x-√3)=0
所以有四个x的解属于集合B.
B={1,-3,√3,-√3}
已知函数f(x)=ax^3+x^2+bx(其中a、b为常数属于R),g(x)=f(x)+f'(x)是奇函数
已知函数f(x)=ax²+2bx+1(a,b为实数),x属于R,F(x)=f(x),x>0或-f(x),x
已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)={f(x),x>0 -f(x),x
已知函数f(x)=ax^3+x^2+bx(其中常数a,b属于R),g(x)=f(x)+f'(x)是奇函数
已知函数f(x)=x^2+ax+b(a,b属于R),若集合A={x|x=f(x)},B={x|x^2=f[f(x)]},
已知函数f(x)=x2+x+q,集合A={x|f(x)=0,x属于R},B={x|f(f(x))=0,x属于R}若B为单
设函数f(x)=x^2+ax+b,(a,b属于R)已知不等式|f(x)|
已知集合A={x|f(x)=x} B={x|f[f(x)]=x} 其中函数f(x)=x2+ax+b(a,b属于R),若A
已知函数f(x)=x2+ax+b(a,b属于R),且集合A={x|f(x)=x} ,B={x|f[f(x)]=x} ,求
1.若函数f(x)=x2+ax,x属于R,常数a属于R,则 (B)
已知函数f(x)=x^2+ax+b(a,b属于R)的值域为【0,正无穷),若关于x的不等式f(x)
已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)=f(x),x>0或-f(x),x0,且f(x)