过抛物线y+2x^2=0的焦点的直线交抛物线于AB两点,则|AB|
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 21:06:34
过抛物线y+2x^2=0的焦点的直线交抛物线于AB两点,则|AB|
由题中的向量OC=向量OA+向量OB,而D是点C关于直线AB的对称点,则由平行四边形法则可知,OD平行于AB.
设OD直线的方程为y=kx(则可知:直线AB的斜率=k.
求y=kx与抛物线x^2=2py交点为:
x^2=2pkx
当x≠0时,解得xD=2pk.
则yD=2pk^2.
且|AO|=|BD|
设A,B坐标分别为A(x1,y1) ,B(x2,y2)
则分别满足
x1^2=2py1;
x2^2=2py2;
相减得:
(x1+x2)(x1-x2)=2p(y1-y2)
其中(y1-y2)/(x1-x2)=k,
则x1+x2=2pk.
设A,B两点切线斜率分别为k1,k2;
用求导数的方法求得:
2py=x^2 →y=(x^2)/(2p) →y'=(2x)/(2p)=x/p;
则:k1=x1/p; k2=x2/p.
则这两条切线方程分别为:
L1:y=y1+k1(x-x1)
=y1+(x1/p)·x - x1^2 /p;
L2:y=y2+(x2/p)·x - x2^2 /p;
L1与L2交于点M(m,-2p),坐标代入,分别得到:
{
-2p=y1+(x1/p)·m - x1^2 /p;
-2p=y2+(x2/p)·m - x2^2 /p;
相减得:
0=(y1-y2)+(m/p)(x1-x2) - (x1+x2)(x1-x2)/p
而(y1-y2)/(x1-x2)=k,又x1+x2=2pk,
则整理得到:m=pk.
由|AO|=|BD|得:
√(x1^2 +y1^2 )=√[(x2-2pk)^2 +(y2-2pk^2)^2]
x1^2 -(x2-2pk)^2 = (y2-2pk^2)^2 -y1^2
运用x1+x2=2pk,x^2=2py等,整理得
x1^2 + x2^2 =4p^2·k^2 ①
而(x1+x2)^2=(2pk)^2 =4p^2·k^2
即 x1^2 + x2^2 +2x1·x2=4p^2·k^2 ,②
②-①可得
x1·x2=0.
这说明A,B两点中有一个横坐标为0;即是坐标原点O;
也就是说,AB与OD重合.
而O点的切线为y=0与y=-2p平行,则显然不可能与直线y=-2p相交.
所以不存在.
设OD直线的方程为y=kx(则可知:直线AB的斜率=k.
求y=kx与抛物线x^2=2py交点为:
x^2=2pkx
当x≠0时,解得xD=2pk.
则yD=2pk^2.
且|AO|=|BD|
设A,B坐标分别为A(x1,y1) ,B(x2,y2)
则分别满足
x1^2=2py1;
x2^2=2py2;
相减得:
(x1+x2)(x1-x2)=2p(y1-y2)
其中(y1-y2)/(x1-x2)=k,
则x1+x2=2pk.
设A,B两点切线斜率分别为k1,k2;
用求导数的方法求得:
2py=x^2 →y=(x^2)/(2p) →y'=(2x)/(2p)=x/p;
则:k1=x1/p; k2=x2/p.
则这两条切线方程分别为:
L1:y=y1+k1(x-x1)
=y1+(x1/p)·x - x1^2 /p;
L2:y=y2+(x2/p)·x - x2^2 /p;
L1与L2交于点M(m,-2p),坐标代入,分别得到:
{
-2p=y1+(x1/p)·m - x1^2 /p;
-2p=y2+(x2/p)·m - x2^2 /p;
相减得:
0=(y1-y2)+(m/p)(x1-x2) - (x1+x2)(x1-x2)/p
而(y1-y2)/(x1-x2)=k,又x1+x2=2pk,
则整理得到:m=pk.
由|AO|=|BD|得:
√(x1^2 +y1^2 )=√[(x2-2pk)^2 +(y2-2pk^2)^2]
x1^2 -(x2-2pk)^2 = (y2-2pk^2)^2 -y1^2
运用x1+x2=2pk,x^2=2py等,整理得
x1^2 + x2^2 =4p^2·k^2 ①
而(x1+x2)^2=(2pk)^2 =4p^2·k^2
即 x1^2 + x2^2 +2x1·x2=4p^2·k^2 ,②
②-①可得
x1·x2=0.
这说明A,B两点中有一个横坐标为0;即是坐标原点O;
也就是说,AB与OD重合.
而O点的切线为y=0与y=-2p平行,则显然不可能与直线y=-2p相交.
所以不存在.
已知过抛物线Y平方=2PX(X>0)的焦点的直线交抛物线于AB两点,且AB=5/2P,求AB方程
若A为抛物线Y=1/4X^2的顶点,过抛物线焦点的直线交抛物线于B,C两点,则向量AB*AC=?
设过抛物线x^2=4y的焦点F的直线交抛物线于A ,B两点,则线段AB的轨迹方程
过抛物线y^2=4x的焦点F作倾斜角为π/4的直线交抛物线于A,B两点,则AB长是
过抛物线X^2=4Y的焦点f作直线交抛物线于ab两点,则弦ab的中点M的轨迹方程?
过抛物线y^2=4x焦点的直线交抛物线于AB两点 以AB为直径的圆中 面积的最小值为
过抛物线y^2=4x的焦点F作倾斜角为θ的直线交抛物线于AB两点用θ表示AB的长度
过抛物线x^2=4y焦点作直线交抛物线于AB两点,求弦AB的中点M的轨迹方程
过抛物线y^2=4x的焦点且斜率为2的直线l交抛物线于A,B两点求l的方程.求/AB/
过抛物线y^2=4x的焦点作直线与抛物线交于A、B两点,求线段AB的中点M的轨迹方程
抛物线y^2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则AB绝
经过抛物线y^2=4x焦点的直线L交抛物线于A,B两点,|AB|=8,则直线L的倾斜角的大小为