作业帮 > 数学 > 作业

过抛物线y+2x^2=0的焦点的直线交抛物线于AB两点,则|AB|

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 21:06:34
过抛物线y+2x^2=0的焦点的直线交抛物线于AB两点,则|AB|
过抛物线y+2x^2=0的焦点的直线交抛物线于AB两点,则|AB|
由题中的向量OC=向量OA+向量OB,而D是点C关于直线AB的对称点,则由平行四边形法则可知,OD平行于AB.
设OD直线的方程为y=kx(则可知:直线AB的斜率=k.
求y=kx与抛物线x^2=2py交点为:
x^2=2pkx
当x≠0时,解得xD=2pk.
则yD=2pk^2.
且|AO|=|BD|
设A,B坐标分别为A(x1,y1) ,B(x2,y2)
则分别满足
x1^2=2py1;
x2^2=2py2;
相减得:
(x1+x2)(x1-x2)=2p(y1-y2)
其中(y1-y2)/(x1-x2)=k,
则x1+x2=2pk.
设A,B两点切线斜率分别为k1,k2;
用求导数的方法求得:
2py=x^2 →y=(x^2)/(2p) →y'=(2x)/(2p)=x/p;
则:k1=x1/p; k2=x2/p.
则这两条切线方程分别为:
L1:y=y1+k1(x-x1)
=y1+(x1/p)·x - x1^2 /p;
L2:y=y2+(x2/p)·x - x2^2 /p;
L1与L2交于点M(m,-2p),坐标代入,分别得到:
{
-2p=y1+(x1/p)·m - x1^2 /p;
-2p=y2+(x2/p)·m - x2^2 /p;
相减得:
0=(y1-y2)+(m/p)(x1-x2) - (x1+x2)(x1-x2)/p
而(y1-y2)/(x1-x2)=k,又x1+x2=2pk,
则整理得到:m=pk.
由|AO|=|BD|得:
√(x1^2 +y1^2 )=√[(x2-2pk)^2 +(y2-2pk^2)^2]
x1^2 -(x2-2pk)^2 = (y2-2pk^2)^2 -y1^2
运用x1+x2=2pk,x^2=2py等,整理得
x1^2 + x2^2 =4p^2·k^2 ①
而(x1+x2)^2=(2pk)^2 =4p^2·k^2
即 x1^2 + x2^2 +2x1·x2=4p^2·k^2 ,②
②-①可得
x1·x2=0.
这说明A,B两点中有一个横坐标为0;即是坐标原点O;
也就是说,AB与OD重合.
而O点的切线为y=0与y=-2p平行,则显然不可能与直线y=-2p相交.
所以不存在.