已知数列{an}是首项为a1=14,公比q=14的等比数列.设bn+2=3log 14an(n∈N*),数列{
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 11:20:21
已知数列{an}是首项为a1=
1 |
4 |
证明:(Ⅰ)∵数列{an}是首项为a1=
1
4,公比q=
1
4的等比数列,
∴an=
1
4•(
1
4)n−1=(
1
4)n,
∵bn+2=3log
1
4an=3log
1
4(
1
4)n=3n(n∈N*),
∴bn=3n-2;
∴bn+1-bn=3(n+1)-2-(3n-2)=3,
∴数列{bn}是以1为首项,3为公差的成等差数列.
(Ⅱ)∵cn=
1
bn•bn+1=
1
(3n−2)[3(n+1)−2]=
1
3(
1
3n−2-
1
3n+1),
∵数列{cn}的前n项和为Sn,
∴Sn=c1+c2+…+cn
=
1
3[(1-
1
4)+(
1
4-
1
7)+…+(
1
3n−2-
1
3n+1)]
=
1
3(1-
1
3n+1)
=
n
3n+1.
1
4,公比q=
1
4的等比数列,
∴an=
1
4•(
1
4)n−1=(
1
4)n,
∵bn+2=3log
1
4an=3log
1
4(
1
4)n=3n(n∈N*),
∴bn=3n-2;
∴bn+1-bn=3(n+1)-2-(3n-2)=3,
∴数列{bn}是以1为首项,3为公差的成等差数列.
(Ⅱ)∵cn=
1
bn•bn+1=
1
(3n−2)[3(n+1)−2]=
1
3(
1
3n−2-
1
3n+1),
∵数列{cn}的前n项和为Sn,
∴Sn=c1+c2+…+cn
=
1
3[(1-
1
4)+(
1
4-
1
7)+…+(
1
3n−2-
1
3n+1)]
=
1
3(1-
1
3n+1)
=
n
3n+1.
【高中数学】已知数列{an}是首项为a1= 1/4 ,公比q= 1/4 的等比数列,设数列{bn}满足bn+2=3log
已知数列an是首项a1=32,公比q=1/2的等比数列,数列bn满足bn=1/n(log2a1+log2a2+…+log
已知等比数列{an}的首项a1>0,公比q>0.设数列{bn}的通项bn=a(n+1)+a(n+2),数列{an},{b
已知数列{an}是首项为a1=1/4,公比q=1/4的等比数列,设bn+2=3log1/4an(n属于N*),数列{Cn
已知数列an是一个以q为公比的等比数列,设bn=1/an,试用an.q表示数列bn的前n项之和Tn
已知公比为3的等比数列{bn}与数列{an}满足{bn}=3an,n∈N*,且a1=1.
已知数列{an}是等比数列,首项a1=8,公比q>0,令bn=log2an,设sn为{bn}的前n项和,若
已知数列{an}满足a1=1,a2=r(r>0),数列{bn}是公比为q的等比数列(q>0),bn=ana(n+1),c
设等差数列an的前n项和为Sn,等比数列bn的前n项和为Tn,已知数列bn的公比为q(q>0),a1=b1=1,S5=4
设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知数列{bn}的公比为q(q>0),a1=b1=
已知数列{an}满足条件:a1=1,a2=r,且数列{anan+1}是公比为q的等比数列.设bn =a(2n-1)+a(
已知数列an首项为a1=1/2,公比为q=1/2的等比数列,设bn=3log1/2(an)