矩阵性质n阶方阵A^2=E能得到A=+或-E吗?这矩阵比较特殊,还有其他那些性质呢?
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.
A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1
设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵
设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵.
已知A是n阶方阵,且满足(A-E)^2=2(A+E),E是n阶单位矩阵,则A^-1=?
已知n阶方阵A满足 A^2-3A+E=0,则A的逆矩阵为多少?
设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵
设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.
设n阶实方阵A=A^2,E为n阶单位矩阵,证明:R(A)+R(A-E)=n
n阶方阵满足A^2-2A+E=0,则A的逆矩阵等于?
.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.