作业帮 > 数学 > 作业

已知函数f(x)=ax+b/x+c (a,b,c∈R)满足f(-1)=0,并且对x>0,0≤f(x)-1≤(x-1)^2

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 18:32:52
已知函数f(x)=ax+b/x+c (a,b,c∈R)满足f(-1)=0,并且对x>0,0≤f(x)-1≤(x-1)^2/2x
已知函数f(x)=ax+(b/x)+c (a,b,c∈R)满足f(-1)=0,并且对x>0,0≤f(x)-1≤((x-1)^2)/2x恒成立,求a,b,c
已知函数f(x)=ax+b/x+c (a,b,c∈R)满足f(-1)=0,并且对x>0,0≤f(x)-1≤(x-1)^2
f(x) = ax + (b/x) + c
已知函数满足f(-1) = 0,则有
f(-1) = -a - b + c = 0 .(1)
考察右边的不等式,令x = 1,有
0 ≤ f(1) - 1 ≤ ((1-1)^2)/2
即 1 ≤ f(1) ≤ 1,因此
f(1) = a + b + c = 1 .(2)
联立(1),(2)
-a - b + c = 0
a + b + c = 1
首先得到
c = 1/2 .(3)
a + b = 1/2 .(4)
由于不等式中约定x > 0,因此将不等式两边乘以x,得到:
0 ≤ (ax^2 + cx + b) - x ≤ ((x-1)^2)/2
先看第一个不等式:
ax^2 + (c-1)x + b >= 0 (x > 0)
因此需满足(二次函数):
a > 0.(5)
(c-1)^2 - 4ab ≤ 0 .(6)
或(一次函数):
a = 0.(5')
b >= 0.(6')
c-1 >= 0.(7')
因为 c = 1/2,所以(5')~(7')不成立.
将(1')(2')代入(6),有
ab >= 1/16 .(7)
a + b = 1/2 .(4)
a > 0 .(5)
显然满足此条件的只能是
a = 1/4
b = 1/4
(如果要证明的话,将(4)代入(7)得到不等式a^2 - (1/2)a + 1/16