(2010•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 01:24:29
(2010•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.
(1)∵抛物线的顶点为Q(2,-1),
∴设抛物线的解析式为y=a(x-2)2-1,
将C(0,3)代入上式,得:
3=a(0-2)2-1,a=1;
∴y=(x-2)2-1,即y=x2-4x+3;
(2)分两种情况:
①当点P1为直角顶点时,点P1与点B重合;
令y=0,得x2-4x+3=0,解得x1=1,x2=3;
∵点A在点B的右边,
∴B(1,0),A(3,0);
∴P1(1,0);
②当点A为△AP2D2的直角顶点时;
∵OA=OC,∠AOC=90°,
∴∠OAD2=45°;
当∠D2AP2=90°时,∠OAP2=45°,
∴AO平分∠D2AP2;
又∵P2D2∥y轴,
∴P2D2⊥AO,
∴P2、D2关于x轴对称;
设直线AC的函数关系式为y=kx+b(k≠0).
将A(3,0),C(0,3)代入上式得:
3k+b=0
b=3,
解得
k=−1
b=3;
∴y=-x+3;
设D2(x,-x+3),P2(x,x2-4x+3),
则有:(-x+3)+(x2-4x+3)=0,
即x2-5x+6=0;
解得x1=2,x2=3(舍去);
∴当x=2时,y=x2-4x+3=22-4×2+3=-1;
∴P2的坐标为P2(2,-1)(即为抛物线顶点).
∴P点坐标为P1(1,0),P2(2,-1);
(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;
当点P的坐标为P2(2,-1)(即顶点Q)时,
平移直线AP交x轴于点E,交抛物线于F;
∵P(2,-1),
∴可设F(x,1);
∴x2-4x+3=1,
解得x1=2-
2,x2=2+
2;
∴符合条件的F点有两个,
即F1(2-
∴设抛物线的解析式为y=a(x-2)2-1,
将C(0,3)代入上式,得:
3=a(0-2)2-1,a=1;
∴y=(x-2)2-1,即y=x2-4x+3;
(2)分两种情况:
①当点P1为直角顶点时,点P1与点B重合;
令y=0,得x2-4x+3=0,解得x1=1,x2=3;
∵点A在点B的右边,
∴B(1,0),A(3,0);
∴P1(1,0);
②当点A为△AP2D2的直角顶点时;
∵OA=OC,∠AOC=90°,
∴∠OAD2=45°;
当∠D2AP2=90°时,∠OAP2=45°,
∴AO平分∠D2AP2;
又∵P2D2∥y轴,
∴P2D2⊥AO,
∴P2、D2关于x轴对称;
设直线AC的函数关系式为y=kx+b(k≠0).
将A(3,0),C(0,3)代入上式得:
3k+b=0
b=3,
解得
k=−1
b=3;
∴y=-x+3;
设D2(x,-x+3),P2(x,x2-4x+3),
则有:(-x+3)+(x2-4x+3)=0,
即x2-5x+6=0;
解得x1=2,x2=3(舍去);
∴当x=2时,y=x2-4x+3=22-4×2+3=-1;
∴P2的坐标为P2(2,-1)(即为抛物线顶点).
∴P点坐标为P1(1,0),P2(2,-1);
(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;
当点P的坐标为P2(2,-1)(即顶点Q)时,
平移直线AP交x轴于点E,交抛物线于F;
∵P(2,-1),
∴可设F(x,1);
∴x2-4x+3=1,
解得x1=2-
2,x2=2+
2;
∴符合条件的F点有两个,
即F1(2-
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两
(2012•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,-
如图所示,抛物线y=ax2+bx+c(a≠0)的顶点坐标为点A(-2,3),且抛物线y=ax2+bx+c与y轴交于点B(
已知抛物线Y=AX^2+bx+c(a不等于0) 的顶点坐标 为Q(2,-1),且与Y轴交于 点C(
如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
如图,已知抛物线y=ax∧2+bx+c(a≠0)的顶点坐标为(4,-2/3),且与y轴交于点C(0,2),与x轴交于A、
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)
已知抛物线y=ax2+bx+c的顶点坐标为(4,-1),与y轴交于点C(0,3),O是原点.
(2014•福州模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标为C(1,k),与y轴的交点在
(2013•仓山区模拟)如图,已知抛物线y=ax2+bx+c的顶点坐标是C(2,-1),与x轴交于点A(1,0),其对称
如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标3.0
如图 已知抛物线y=ax²+bx+c.顶点坐标为(2,-1)且与Y轴交于点(0,3)与x轴交于A B两点