零点定理证明f(x)在[0,1]连续,且f(0)=0,f(1)=3.证明:存在α∈(0,1),使f(α)=e^α
零点定理证明f(x)在[0,1]连续,且f(0)=0,f(1)=3.证明:存在α∈(0,1),使f(α)=e^α
拉格朗日中值定理证明题 且在(0,1)上连续 且可倒 证明至少存在一个ξ 使f(x)'=2ξ(f(1)-f(0)) 成立
中值定理证明设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0 证明至少存在一点g∈(0,1)使得f’(g
关于函数连续证明fx在〔0,2]连续且f(2)=f(0),证明存在x2-x1=1使得f(x1)=f(x2).
中值定理证明函数f(x)在【0,1】连续,在(0,1)可导,f(0)=0,且在(0,1)内f(x)!=0.证明至少存在一
设f在0到1上连续且可导,3*定积分上1/3下0e^(1-x^2)f(x)dx=f(1),证明存在t在(0,1)使f'(
"中值定理"证明题设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明存在一点ξ∈(0,a),使f(ξ
设f(x)在[0,1]上连续,且单调不增,证明∫(α,0)f(x)dx>=α∫(1,0)f(x)dx (0
f(x)在[0,1]上连续,定积分f(x)dx=0,证明至少存在一点ξ,使f(1-ξ)=-f(ξ)
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=1/e证明;存在a属于(0,1),使得f'(
一道证明题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明存在t属于(0,1),使f'(