设函数f(x)在[0,1]上连续,在(0,1)内可导,且∫f(x)dx=2∫f(x)dx(他们的积分上下限分别是0到1和
高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=
设函数f(x)在【0,1】上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为2/3),证明:
微积分不等式证明设f(x)在[0,1]上连续,且∫f(x)dx=0,∫xf(x)dx=1(两个积分都是在0-1上的积分)
设 f (x) 在 [0,1] 上连续 ∫f(x)dx=A积分上下限为0,1求∫dx∫f(x)f(y)dy,上下限依次为
设f(x)导数在【-1,1】上连续,且f(0)=1,计算∫【f(cosx)cosx-f‘(cosx)sin^2x】dx(
设f(x)在【0,1】上连续可导,且f(1)=2∫ x三次方*f(x)dx,(上限1/2,下限0)证明:
一道高数题,设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x)∫(0,1) f(x)dx,则f(
设f(x)在[0,1]上连续 且满足f(x)=[1/(1+x^2)]-积分号(上限1,下限0)f(x)dx 求f(x)在
设函数f(x)在(-∞,+∞)上连续,且f(x)=e^x+1/e∫(0,1)f(x)dx,求f(x)
设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2
设函数f(x)在[0,1]有二阶连续导数 求 ∫(0积到1)[2f(x)+x(1-x)f''(x)]dx
设f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=∫xe^(1-x)f(x)dx(上限1,下限0),证明必存