作业帮 > 数学 > 作业

设函数f(x)在[0,1]上连续,在(0,1)内可导,且∫f(x)dx=2∫f(x)dx(他们的积分上下限分别是0到1和

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 19:34:04
设函数f(x)在[0,1]上连续,在(0,1)内可导,且∫f(x)dx=2∫f(x)dx(他们的积分上下限分别是0到1和0到1╱2),试证明:存在a∈(0,1),使得f(a)的导数=0 发图片,求详解.
设函数f(x)在[0,1]上连续,在(0,1)内可导,且∫f(x)dx=2∫f(x)dx(他们的积分上下限分别是0到1和