1.设m^4+n^4+p^4+t^4=4mnpt (m、n、p、t均为正数),求证:m=n=p=t.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 06:32:56
1.设m^4+n^4+p^4+t^4=4mnpt (m、n、p、t均为正数),求证:m=n=p=t.
(注:m^4为m的4次方)
2.a、b、c、d是四个任意给定的整数,求证:以下六个差数:b-a,c-a,d-a,c-b,d-b,d-c的积一定可以被12整除.
(注:m^4为m的4次方)
2.a、b、c、d是四个任意给定的整数,求证:以下六个差数:b-a,c-a,d-a,c-b,d-b,d-c的积一定可以被12整除.
1、因为m^4+n^4+p^4+t^4-4mnpt
=(m^2-n^2)^2+(p^2-t^2)^2+2(mn-pt)^2=0
所以 m^2=n^2 ,p^2=t^2 ,mn=pt
而由于m,n,p,t都是正数
所以m=n=p=t
2、如果a、b、c、d中至少有两个数相等,则6个差数中必有一个等于0,
则6个差数的积等于0,能被12整除.
当a、b、c、d两两不相等时,根据抽屉原理,则至少有两个数的奇、偶性相同,则6个差数中至少有2个偶数,所以6个差数的积能被4整除,
由于6个差数也两两不相等,假设6个差数都不能被3整除,则6个差数都只能写成3k+1或3k+2的形式,根据抽屉原理,至少有3个数能表达成其中的一种,而这3个数两两相减,则必定有一个差数(显然这个新的差数被3整除)和原来的6个差数中的一个形式一样,这与假设矛盾,所以必定有1个是3的倍数,所以6个差数的积能被12整除.(这里举个例子:假设b-a,c-a,d-a都能写成3k+1的形式,则(c-a)-(b-a)能被3整除,(c-a)-(b-a)=c-b,则c-b能被3整除,这与假设的6个差数都不能被3整除矛盾)
=(m^2-n^2)^2+(p^2-t^2)^2+2(mn-pt)^2=0
所以 m^2=n^2 ,p^2=t^2 ,mn=pt
而由于m,n,p,t都是正数
所以m=n=p=t
2、如果a、b、c、d中至少有两个数相等,则6个差数中必有一个等于0,
则6个差数的积等于0,能被12整除.
当a、b、c、d两两不相等时,根据抽屉原理,则至少有两个数的奇、偶性相同,则6个差数中至少有2个偶数,所以6个差数的积能被4整除,
由于6个差数也两两不相等,假设6个差数都不能被3整除,则6个差数都只能写成3k+1或3k+2的形式,根据抽屉原理,至少有3个数能表达成其中的一种,而这3个数两两相减,则必定有一个差数(显然这个新的差数被3整除)和原来的6个差数中的一个形式一样,这与假设矛盾,所以必定有1个是3的倍数,所以6个差数的积能被12整除.(这里举个例子:假设b-a,c-a,d-a都能写成3k+1的形式,则(c-a)-(b-a)能被3整除,(c-a)-(b-a)=c-b,则c-b能被3整除,这与假设的6个差数都不能被3整除矛盾)
int gjs(int m,int n) { int p,t; if(m>n) {p=m; m=n; n=p; } wh
|m-5|+|2n-3|+|4-p|=0,求m,n,p的值.
1.有4个不同的正整数,m、n、p、q满足(7-m)(7-n)(7-p)(7-q)=4,则m+n+p+q=?
在反比例函数y=k/x的图像上有一点P,他的横坐标m与纵坐标n是方程t*t-4t-2=0的两根,则P点坐标为?
设向量M=2a-3b.n=4a-2b,p=3a+2b,则p用m,n表示为?
p( )( )( )( )( )( ) o,s,t,n,m,a
已知m、n、p满足|2m|+m=0,|n|=n,p|p|=1.化简:|n|-|m-p-1|+|p+n|-|2n+1|.
(m+n)(p+q)-(m+n)(p-q)=
反比例函数y=k/x 的图像上有一点p(m,n), t的平方-4t-2=0的两个根,求k
{3m-4n=79m-10n+25=03x-52=6x+42=-153p=582p-38=19s-13t+12=0s=2
已知m+n=2/p mn=-1 1/n-1/m=4/p的绝对值 则p值为( )
反比例函数y=x分之k的图像经过P(m,n)且m、n是关于t的一元二次方程x的二次方+kx+4=0的两个根,求p点坐标