如图,直线y=x+b(b>0)分别交x轴,y轴于A,B两点,交双曲线y=2/x于点D,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 14:08:55
如图,直线y=x+b(b>0)分别交x轴,y轴于A,B两点,交双曲线y=2/x于点D,
过D作DC⊥x轴于点C,作DE⊥y轴于点E,连接OD
(1)求ADxBD的值
(2)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
过D作DC⊥x轴于点C,作DE⊥y轴于点E,连接OD
(1)求ADxBD的值
(2)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
(1)A点的坐标为(-b,0),B点的坐标为(0,b),解方程组y=x+b与y=2/x,得D点(只取第一相限坐标,第三相限同理)坐标为(-b+根号下b的方+8)/2,(b+根号下b的方+8)/2,所以向量AD的坐标为[(-b+根号下b的方+8)/2]+b,(b+根号下b的方+8)/2.向量BD的坐标为(-b+根号下b的方+8)/2,[(b+根号下b的方+8)/2]-b.所以|AD|*|BD|=(向量AD*向量BD)/向量AD与向量BD夹角的余弦值,代入数值解之得AD|*|BD|=4.
(2)假设存在直线AB,使得四边形OBCD为平行四边形,那么,由平行四边形的性质知:OB=CD.因为OB=b,CD=(b+根号下b的方+8)/2,所以,b=(b+根号下b的方+8)/2,化简得b=根号下b的方+8,这是一个矛盾结果,所以不存在直线AB,使四边形OBCD为平行四边形.
(2)假设存在直线AB,使得四边形OBCD为平行四边形,那么,由平行四边形的性质知:OB=CD.因为OB=b,CD=(b+根号下b的方+8)/2,所以,b=(b+根号下b的方+8)/2,化简得b=根号下b的方+8,这是一个矛盾结果,所以不存在直线AB,使四边形OBCD为平行四边形.
如图,直线y=-3/2x+6交x轴于点A,交y轴于点B,交双曲线y=k/x于C、D两点,若△AOC、△COD、△BOD的
如图,直线y=-2x-2与双曲线y=kx(k≠0)交于点A,与x轴、y轴分别交于点B,C,AD⊥x轴于点D,如果&nbs
如图1,直线Y=2X-4分别交X轴、Y轴于B、A两点.交双曲线Y=K/X(x>0)于点C,三角形AOC的面积=8.
初二反比例函数题;如图,直线y=-1/2x+1分别于x轴、y轴交于a、b两点,双曲线y=k/x与直线ab交于p点
如图,直线y=-x-k-1与双曲线y=k/x交于A.C两点,AB⊥x轴于B,直线交x轴于点D.已知S△ABO=3/2,求
如图,直线y=-2/3X+12分别交X轴、Y轴于B、A两点,线段AB的垂直平分线分别交X轴、Y轴于C、D两点(1)求点
如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y= 2 x 于点D,过D作两坐标轴的垂线DC、DE,连接O
平面直角坐标系有一直线交一支双曲线Y=2/X(X>0)于A,B两点,直线A,B还分别交X轴,Y轴于D,C两点,A,B坐标
如图 直线y=-0.5X+2与Y轴,X轴分别交于A,B两点,点D是射线BO上的一个动点,过D作Y轴的平行线交y=-X
如图,直线y=x+b(b不等0)交坐标轴于A,B两点,交双曲线y=2/x,于点D作两坐标轴的垂线DC,DE,连接OD.求
如图,过原点的直线与函数y=2^x的图像交于A,B两点,过A,B作y轴的垂线分别交函数y=4^x的图像于点C,D.
如图 点a b为直线y=x上的两点,过A,B两点分别作y轴的平行线交y=4/x (x>0)于C,D两点.