作业帮 > 数学 > 作业

取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A顺时针方向旋转一个大

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 21:25:32
取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A顺时针方向旋转一个大
取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A顺时针方向旋转一个大
(1)当α为多少度时,能使得图②中AB‖DC;
(2)当旋转至图③位置,此时α又为多少度图③中你能找出哪几对相似三角形,并求其中一对的相似比;
(3)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.
考点:相似三角形的判定与性质.专题:压轴题.分析:一副三角板的角度常识和相似三角形的判定定理及性质可求解.(1)如图②,由题意∠CAC'=α,
要使AB‖DC,须∠BAC=∠ACD,
∴∠BAC=30°.
∴α=∠CAC'=∠BAC'-∠BAC=45°-30°=15°.
即α=15°时,能使得AB‖DC.(4分)
(2)易得α=45°时,可得图③,
此时,若记DC与AC',BC'分别交于点E,F,
则共有两对相似三角形:△BFC∽△ADC,△C'FE∽△ADE.(6分)
下求△BFC与△ADC的相似比:
在图③中,设AB=a,则易得 .
在图③中,设AB=a,则易得AC= a.
则BC=( -1)a,BC:AC=( -1)a:a=1:(2+ )
或(2- ):2.(8分)
注:△C'FE与△ADE的相似比为:C'F:AD=( - +1):或( + -2):2.
(3)解法一:
当0°<α≤45°时,总有△EFC'存在.
∵∠EFC'=∠BDC+∠DBC',∠CAC'=α,∠FEC'=∠C+α,
∵∠EFC'+∠FEC'+∠C'=180°
∴∠BDC+∠DBC'+∠C+α+∠C'=180°(11分)
又∵∠C'=45°,∠C=30°
∴∠DBC'+∠CAC'+∠BDC=105°(13分)
解法二:
在图②中,BD分别交AC,AC'于点M,N,
由于在△AMN中,∠CAC'=α,∠AMN+∠CAC'+∠ANM=180°,
∴∠BDC+∠C+α+∠DBC'+∠C'=180°
∴∠BDC+30°+α+∠DBC'+45°=180°
∴∠BDC+α+∠DBC'=105°(11分)
在图③中,α=∠CAC'=45°
易得∠DBC'+∠BDC=60°
也有∠DBC'+∠CAC'+∠BDC=105°
综上,当0°<a≤45°时,总有∠DBC'+∠CAC'+∠BDC=105°.(13分)点评:此题主要考查了相似三角形的判定定理及一副三角板的固定角度.需注意的是利用相似性质的时候找准对应的角、对应边.
取一副三角板按图(1)拼接,固定三角板ADC,将三角板ABC绕点A按顺时针方向旋转一个大小为a的角得到"△"ABC 取一副三角尺按图①的方式拼接,固定三角尺ADC,将三角尺ABC绕点A按顺时针方向旋转一个大小为α的角得到 取一副三角板按图①放置,∠DAC=∠B=90°,∠BAC=45°,∠DCA=30°.固定三角板ADC,将三角板ABC绕A 取一副三角尺按图拼接,固定三角尺ADC,将三角尺ABC绕点A依顺时针方向旋转一个大小为a的角 几何滴!如图Rt△ABC中,AC=BC,CD⊥AB于点D,将三角板的直角顶点固定在点D,把三角板绕点D旋转1.若三角板的 3.将一副三角板的两三角板如图放置,OM平分∠AOC,ON平分∠DOC. ①将45°三角板绕点O旋 一副三角板按如图所示叠放在一起,若固定△AOB,将△ACD绕着公共顶点A,按顺时针方向旋转α度(0°<α<180°),当 在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,将三角板绕点E按顺时针方向旋转,当三角板 一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2)? ,如图,斜边长为6cm,∠A=30°的直角三角板ABC绕点C顺时针方向旋转90°至三角形求 已知等腰RT三角形ABC,一等腰三角板的一个锐角顶点与点C重合,将此三角板绕点C旋转时,三角板两边交直线AB 如图,在△ABC中,AC=BC,∠C=90°,将一块三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的