定义在定义域D内的函数y=f(x),若对任意的x1、x2∈D都有|f(x1)-f(x2)|<1,则称函数y=f(x)为“
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 15:29:07
定义在定义域D内的函数y=f(x),若对任意的x1、x2∈D都有|f(x1)-f(x2)|<1,则称函数y=f(x)为“妈祖函数”,否则称“非妈祖函数”.试问函数f(x)=x3-x+α(x∈[-1,1],α∈R)是否为“妈祖函数”?如果是,请给出证明;如果不是,请说明理由.
因为|f(x1)-f(x2)|<|fmax-fmin|,
函数f(x)=x3-x+a(x∈[-1,1],a∈R]导数是f′(x)=3x2-1
当3x2-1=0时,即x=±
3
3,当0<x<
3
3时,f′(x)=3x2-1<0,当x>
3
3时,
f′(x)=3x2-1>0,故f(x)在x∈[0,1]内的极小值是a-
2
3
9,同理,
f(x)在[-1,0]内的极大值是a+
2
3
9,因为f(1)=f(-1)=a,
所以函数f(x)=x3-x+a(x∈[-1,1],a∈R]的最大值是a+
2
3
9,最小值是a-
2
3
9,
故|f(x1)-f(x2)|<|fmax-fmin|=
4
3
9<1
所以函数f(x)=x3-x+a(x∈[-1,1],a∈R]是“妈祖函数”.(2分)
函数f(x)=x3-x+a(x∈[-1,1],a∈R]导数是f′(x)=3x2-1
当3x2-1=0时,即x=±
3
3,当0<x<
3
3时,f′(x)=3x2-1<0,当x>
3
3时,
f′(x)=3x2-1>0,故f(x)在x∈[0,1]内的极小值是a-
2
3
9,同理,
f(x)在[-1,0]内的极大值是a+
2
3
9,因为f(1)=f(-1)=a,
所以函数f(x)=x3-x+a(x∈[-1,1],a∈R]的最大值是a+
2
3
9,最小值是a-
2
3
9,
故|f(x1)-f(x2)|<|fmax-fmin|=
4
3
9<1
所以函数f(x)=x3-x+a(x∈[-1,1],a∈R]是“妈祖函数”.(2分)
函数f(x)的定义域为D,若对任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称f(x)在D上为非减函
函数f(x)的定义域为D,若对于X1,X2∈D,当X1<X2时,都有f(X1)≤f(X2),则称f(x)在D上为非减函数
函数f(x)的定义域为D,若对任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非
定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得f(x1)+f(x2)2=C,则称
函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为
函数f(x)的定义域为D,若对于任意的X1,X2∈D,当X1<X2时,都有f(x1)≤f(x2),则称函数f(x)在D上
函数f(x)的定义域为D,若对于任意x1、x2∈D,当x1<x2时,都有f(x1) ≤f(x2),则称函数f(x)在D上
定义在R上的函数y=f(x),对任意x1,x2都有f(x1+x2)=f(x1)+f(x2),判断函数y=f(x)的奇偶性
若定义在R上的函数f(X)满足:对任意X1,X2都有f(X1+X2)=f(X1)+f(X2)+1,则f(X)+1为偶函数
设函数f(x)是定义域在R上的函数,若对任意X1,X2都有f(X1+X2)+f(x1-x2)=2f(x1)f(x2)求f
已知函数y=f(x)是定义在区间D上的增函数,对于任意的x1,x2∈D,且x1≠x2,则式子(f(x1)-f(x2))/
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f