1、 如图,E为平行四边形ABCD外一点,AE垂直CE,BE垂直DE,求证:四边形ABCD是矩形
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 22:59:28
1、 如图,E为平行四边形ABCD外一点,AE垂直CE,BE垂直DE,求证:四边形ABCD是矩形
2、如图,以三角形ABC的三边为边在BC的同侧分别作三个等边三角形,即三角形ABD、三角形BCE、三角形ACF,请回答下列问题
(1)四边形ADEF是什么四边形?并说明理由
(2)当三角形ABC满足什么条件时,四边形ADEF是菱形
(3)当三角形ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在
2、如图,以三角形ABC的三边为边在BC的同侧分别作三个等边三角形,即三角形ABD、三角形BCE、三角形ACF,请回答下列问题
(1)四边形ADEF是什么四边形?并说明理由
(2)当三角形ABC满足什么条件时,四边形ADEF是菱形
(3)当三角形ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在
1.根据矩形的性质来推就可以了.
2.(1)是四边形ADEF平行四边形.
理由:
∵△ABD,△EBC都是等边三角形.
∴AD=BD=AB,BC=BE=EC
∠DBA=∠EBC=60°
∴∠DBE+∠EBA=∠EBC+∠EBA.
∴∠DBE=∠ABC.
在△DBE和△ABC中
∵BD=BA
∠DBE=∠ABC
BE=BC,
∴△DBE≌△ABC.
∴DE=AC.
又∵△ACF是等边三角形,
∴AC=AF.
∴DE=AF.
同理可证:AD=EF,
∴四边形ADEF平行四边形.
;(2)当△ABC为等腰三角形并且不是等边三角形时,即AB=AC时,由第(1)题中可知四边形ADEF的四边都相等,此时四边形ADEF是菱形
(3)当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在
2.(1)是四边形ADEF平行四边形.
理由:
∵△ABD,△EBC都是等边三角形.
∴AD=BD=AB,BC=BE=EC
∠DBA=∠EBC=60°
∴∠DBE+∠EBA=∠EBC+∠EBA.
∴∠DBE=∠ABC.
在△DBE和△ABC中
∵BD=BA
∠DBE=∠ABC
BE=BC,
∴△DBE≌△ABC.
∴DE=AC.
又∵△ACF是等边三角形,
∴AC=AF.
∴DE=AF.
同理可证:AD=EF,
∴四边形ADEF平行四边形.
;(2)当△ABC为等腰三角形并且不是等边三角形时,即AB=AC时,由第(1)题中可知四边形ADEF的四边都相等,此时四边形ADEF是菱形
(3)当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在
如图,平行四边形ABCD中,对角线AC,BD交于点O,E是平行四边形ABCD外一点,且AE垂直CE,BE垂直DE,求证四
如图,E为平行四边形ABCD外一点,O为对角线交点,AE⊥CE,BE⊥DE,求证:四边形ABCD为矩形
如图,E为平行四边形ABCD外一点,AE⊥EC,BE⊥DE,求证:四边形是矩形.
如图16-115所示,E为平行四边形ABCD外一点,AE⊥CE,BE⊥DE,求证平行四边形ABCD是矩形
如图所示,E为平行四边形ABCD外一点,AE⊥CE,BE⊥DE,求证平行四边形ABCD是矩形.
已知E为平行四边形ABCD外一点,AE⊥CE,BE⊥DE,求证:平行四边形ABCD是矩形.
空间几何证明题证明:已知平行四边形ABCCD,E是平行四边形ABCD外的一点,AE垂直与CE,DE垂直与BE,求证平行四
如图所示,E为平行四边形ABCD外一点,AE垂直EC,BE垂直ED,求证:平行四边形ABCD为矩形.PS:图有点那啥,将
关于矩形的证明题如图所示,E为平行四边形ABCD外一点,AE垂直EC,BE垂直ED,求证:平行四边形ABCD为矩形.PS
如图,在四边形ABCD中AD=CB,DE垂直于E,BF垂直于AC于F且AF=CE,求证四边形ABCD是平行四边形
如图:E为平行四边形ABCD外的一点,AE⊥EC,BE⊥ED,求证:平行四边形ABCD为矩形
已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E为ABCD外一点,且AE⊥CE,求证:BE⊥DE