若二次函数f1(x)=a1x2+b1x+c1和f2(x)=a2x2+b2x+c2使得f1(x)+f2(x)在(-∞,+∞
如果二次函数f1(x)=a1x方+b1x+c1和f2(x)=a2x方+b2+c2.f1(x)+f2(x)在(负无穷大,正
若两个二次函数f1(x)、f2(x)满足条件: (1)f(x)= f1(x)+f2(x)在(-∞,+∞)上单调递增
若二次函数f1(x)=ax2+bx+c和f2(x)=ax+bx+c,使得
若二次函数f1(x)、f2(x)同时满足条件:(1)f(x)=f1(x)+f2(x)在R上单调递减;(2)g(x)=f1
设f1(x)与f2(x)都是定义在R上的二次函数,且f1(x)+f2(x)在R上递增,则符合题意的一组f1(x)与f2
牛人1.若f1(x)和f2(x)为恒大于零的两个任意分布函数.它们满足归一化条件 ∫-∞∞f1[x]dx= ∫-∞∞f2
设函数f1(x)=x1/2 f2(x)=x-1 f3(x)=x2 (注:x后的是指数),则f1(f2(f3(2012))
已知二次函数y=f1(x)的图像以原点为顶点且过点(1,1),反比例函数f2(x)=8/x,f(x)=f1(x)+f2(
设函数f1(x)=x12,f2(x)=x-1,f3(x)=x2,则f3{f2[f1(2011)]}=( )
函数f1(x)=-(x-2),f2(x)=x-1 ,满足,f1(1)=1,f2(2)=0,f2(1)=0,f2(2)=1
已知y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,且满足a1/a2=b1/b2=c1/c2=k(k≠0,1
已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,f2(x)=f1‘(x),f(x)=f2’(x)