作业帮 > 数学 > 作业

设S=1+2i+3i+.+(4n+1)i的4n次方(n属于N),则S=?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 03:11:45
设S=1+2i+3i+.+(4n+1)i的4n次方(n属于N),则S=?
S=1+2i+3的i的平方+....+(4n+1)i的4n次方(n属于N),则S=?
设S=1+2i+3i+.+(4n+1)i的4n次方(n属于N),则S=?
S=1+2i+3i+.+(4n+1)i的4n次方
两边同时乘以i
S=1+2i+3i+.+(4n+1)i的4n次方
i*S= i+2i^2+……+4n*i^4n+(4n+1)i的4n+1次方 相减
S*(1-i)=1+i^2+……+i^4n-(4n+1)*i^(4n+1)
S*(1-i)=[1-i^(4n+2)]/(1-i)-(4n+1)*i^(4n+1)
i^4n=1 i^(4n+1)=i i^(4n+2)=-1
S*(1-i)=2/(1-i)-(4n+1)*i
S=2/(1-i)^2-(4n+1)*i/(1-i)
=2/(-2i)-(4n+1)*i*(1+i)/2
=i-(4n+1)*(i-1)/2
=(4n+1)*(1+i)/2