正三角形ABC中,M是BC边(不含端点B.C)上任意一点,P是BC延长线上的一点,N是∠ACP的平分线上的一点
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 16:16:00
正三角形ABC中,M是BC边(不含端点B.C)上任意一点,P是BC延长线上的一点,N是∠ACP的平分线上的一点
楼主,选我哦.
证明:在AB上截取EA=MC,连接EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4= ∠ACP=60°.∴∠MCN=∠3+∠4=120°…①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.…②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵∠1=∠2.AE=MC,∠MCN=∠5
∠1=∠2.AE=MC,∠MCN=∠5
.∠1=∠2.AE=MC,∠MCN=∠5
∴△AEM≌△MCN (ASA).∴AM=MN.
证明:在AB上截取EA=MC,连接EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4= ∠ACP=60°.∴∠MCN=∠3+∠4=120°…①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.…②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵∠1=∠2.AE=MC,∠MCN=∠5
∠1=∠2.AE=MC,∠MCN=∠5
.∠1=∠2.AE=MC,∠MCN=∠5
∴△AEM≌△MCN (ASA).∴AM=MN.
如图,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是 角DCP 的平分线上的一点
在正三角形ABC中,M是BC边上任意一点(不含端点B,C).N是角ACP的角平分线上的一点,当角AMN为60度时,AM=
如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线
(1)如图在等边三角形ABC中,M是BC边上任意一点,P是BC延长线上一点,N是∠ACP平分线上一点,∠AMN=60,求
在等边三角形abc中m是bc边上任意一点,p是bc延长线上一点,n是∠acp平分线上一点,已知∠amn=60°
在正方形ABCD中,M是BC边上任意一点,P是BC延长线上一点,N是角DCP的平分线上一点,若角AMN是90度,求证AM
如图,等边三角形ABC中,M是BC边上任意一点,P是BC延长线上一点,CN平分角ACP,若角AMN=60度,求证AM=M
已知在正△ABC中,AB=4,点M是射线AB上的任意一点(点M与点A、B不重合),点N在边BC的延长线上,且AM=CN.
三角形ABC中,AD平分角BAC,E是BC延长线上的一点,角B=角EAC.求正:点E在AD的垂直平分线上
已知三角形ABC中,AD平分角BAC,E是BC延长线上一点,角B=角EAC,点E在AD的垂直平分线上
两道初一几何题,急!已知在△ABC中,∠B=2∠C,M是BC的中点,AD平分∠A,E是AB延长线上一点,且ME⊥AD于F
如图已知三角形ABC中∠A=∠B D是BC延长线上的一点 CE‖AB 试证明CE平分∠ACD