用正交变换将二次型f(x1,x2,x3)=2x1^2+5x2^2+5x3^2+4x1x2-4x1x3-8x2x3化成标准
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 01:03:03
用正交变换将二次型f(x1,x2,x3)=2x1^2+5x2^2+5x3^2+4x1x2-4x1x3-8x2x3化成标准型
解: |A-λE|=
2-λ 2 -2
2 5-λ -4
-2 -4 5-λ
r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)
2-λ 2 -2
2 5-λ -4
0 1-λ 1-λ
c2-c3
2-λ 4 -2
2 9-λ -4
0 0 1-λ
= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)
= (1-λ)(λ^2-11λ+10)
= (10-λ)(1-λ)^2.
A的特征值为: λ1=10,λ2=λ3=1.
(A-10E)X=0 的基础解系为 a1=(1,2,-2)'
(A-E)X=0 的基础解系为 a2=(2,-1,0)',a3=(2,0,1)
正交化得
b1=(1,2,-2)'
b2=(2,-1,0)'
b3=(1/5)(2,4,5)'
单位化得
c1=(1/3,2/3,-2/3)'
c2=(2/√5,-1/√5,0)'
c3=(2/√45,4/√45,5/√45)'
令Q=(c1,c2,c3). 则Y=QX是正交变换,且 f=10y1^2+y2^2+y3^2
2-λ 2 -2
2 5-λ -4
-2 -4 5-λ
r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)
2-λ 2 -2
2 5-λ -4
0 1-λ 1-λ
c2-c3
2-λ 4 -2
2 9-λ -4
0 0 1-λ
= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)
= (1-λ)(λ^2-11λ+10)
= (10-λ)(1-λ)^2.
A的特征值为: λ1=10,λ2=λ3=1.
(A-10E)X=0 的基础解系为 a1=(1,2,-2)'
(A-E)X=0 的基础解系为 a2=(2,-1,0)',a3=(2,0,1)
正交化得
b1=(1,2,-2)'
b2=(2,-1,0)'
b3=(1/5)(2,4,5)'
单位化得
c1=(1/3,2/3,-2/3)'
c2=(2/√5,-1/√5,0)'
c3=(2/√45,4/√45,5/√45)'
令Q=(c1,c2,c3). 则Y=QX是正交变换,且 f=10y1^2+y2^2+y3^2
f(x1,x2,x3)=x1^2-4x1x2+4x1x3-2x2^2+8x2x3-2x3^2 写出对应矩阵,用正交变换化
求一个正交变换,化二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3为标准型.
f(x1,x2,x3)=2x1x2+2x1x3+2x2x3,求一正交变换x=py,将此二次型化为标准型.那是X
若二次型是ψ(X1,X2,X3)=X1^2-2X1X2+2X1X3-2X2X3+4X2^2,用初等变换法求其标准型以及线
设f(X1,X2,X3)=X1^2+X2^2+X3^3+4X1X2+4X1X3+4X2X3 求1一正交变换化f为标准形
1、求一个正交变换,将二次型f(x1,x2,x3)=2x12+3x22+3x32+4x2x3化成标准形.
将二次型f(x1,x2,x3)=2x1x2+2x1x3-6x2x3 化为标准型和规范型..
f(x1,x2,x3)=x1^2-2x2^2-2x3^2-4x1x2+4x1x3+8x2x3化为标准型.并写出所做的非退
化二次型f=x1^2+3x2^2+5x3^2+2x1x2-4x1x3为标准型,并求所用的变换矩阵
求一个正交变换把下列二次型化成标准型 f(x1,x2,x3)=2(x1)^2+3(x2)^2+3(x3)^2+4(x2)
设f(x1,x2,x3)=x1²-4x1x2+8x1x3+4x2²+4x2x3+x3²,求
设二次型f=(x1,x2,x3)=2x1^2+ax3^2+2x2x3 经正交变换(x1,x2,x3)=p(y1,y2,y