设函数f(x)在[a,b]上有连续的导函数,且f(a)=f(b)=0,∫(b,a) [f(x)^2]dx=1,则∫(b,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 13:06:59
设函数f(x)在[a,b]上有连续的导函数,且f(a)=f(b)=0,∫(b,a) [f(x)^2]dx=1,则∫(b,a) [xf(x)f'(x)]dx=?【注意∫()括号里面第一个数字是在上面,第二个数字在下面】
(A)-1/2
(B)1/2
(C)0
(D)1
请问如何做出这道题目,请尽可能通俗地,傻瓜式地讲解,要过程和你的最终选项,
(A)-1/2
(B)1/2
(C)0
(D)1
请问如何做出这道题目,请尽可能通俗地,傻瓜式地讲解,要过程和你的最终选项,
对“原式∫(b,a) [xf(x)f'(x)]dx”凑微分得
=∫(b,a) [xf(x)]df(x),用分部积分法得
=[xf(x)f(x)]代(b,a)-∫(b,a) [f(x)*(f(x)+xf'(x))]dx
=0-∫(b,a) f(x)f(x)dx-∫(b,a) [xf(x)f'(x)]dx= -1-∫(b,a) [xf(x)f'(x)]dx,最后一个积分是原式,得
原式=-1-原式,则原式=-1/2.
=∫(b,a) [xf(x)]df(x),用分部积分法得
=[xf(x)f(x)]代(b,a)-∫(b,a) [f(x)*(f(x)+xf'(x))]dx
=0-∫(b,a) f(x)f(x)dx-∫(b,a) [xf(x)f'(x)]dx= -1-∫(b,a) [xf(x)f'(x)]dx,最后一个积分是原式,得
原式=-1-原式,则原式=-1/2.
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
设f(x)在[a,b]上有连续二阶导函数,且f(a)=f(b)=0,证明∫[a,b][2f(x)-(x-a)(x-b)f
设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a
设函数f(x)在[a,b]上连续,证明:∫(a→b)f(x)dx=(b-a)∫(0→1)f[a+(b-a)x]dx
设函数f(x)在区间[a,b]上连续,证明:∫f(x)dx=f(a+b-x)dx
定积分的高数数学题设函数f(x)在区间[a,b]上连续,且f(x)>=0,若∫(b a)f(x)dx=0,证明f(x)恒
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
设f(x)在[a,b]上连续,且f(b)=a,f(a)=b,证明∫(上b下a)f(x)f'(x)dx=1/2(a
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)d
设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,∫b到a f(x)dx=0,证在闭区间a,b上恒有f(x)=
设函数f(x)在[a,b]上有连续导数,且f(c)=0,a