作业帮 > 数学 > 作业

已知各项均不为零的数列{an},定义向量Cn=(an,a(n+1)),bn=(n+n+1),n∈N*.下列命题中为真命题

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 16:57:46
已知各项均不为零的数列{an},定义向量Cn=(an,a(n+1)),bn=(n+n+1),n∈N*.下列命题中为真命题的是( )
A.若∨(倒的A)n∈N*总有Cn∥bn成立,则数列{an}是等差数列;B.若∨(倒的A)n∈N*总有Cn∥bn成立,则数列{an}是等比数列;C.若∨(倒的A)n∈N*总有Cn⊥bn成立,则数列{an}是等差数列;D.若∨(倒的A)n∈N*总有Cn⊥bn成立,则数列{an}是等比数列;(注:注明正确的结果的解答过程.
已知各项均不为零的数列{an},定义向量Cn=(an,a(n+1)),bn=(n+n+1),n∈N*.下列命题中为真命题
真命题是A.
向量Cn=(an,a(n+1)),bn=(n,n+1),n∈N*.
n∈N*时,总有Cn∥bn成立,则(n+1) an-n a(n+1)=0,
a(n+1)/ an=(n+1)/n,
∴an=a1•a2/a1•a3/a2•……•an/ a(n-1)
= a1•2/1•3/2•……•n/(n-1)
= n a1.
所以an- a(n-1)= n a1-(n-1) a1= a1,
数列{an}是首项为a1,公差为a1的等差数列.
向量Cn=(an,a(n+1)),bn=(n,n+1),n∈N*.
n∈N*,总有Cn⊥bn成立,
则n an+(n+1) a(n+1)=0,
a(n+1)/ an=- n /(n+1),
∴an=a1•a2/a1•a3/a2•……•an/ a(n-1)
= a1•-1/2•-2/3•……• -(n-1)/ n
= (-1)^(n-1) •a1 /n.
此时的数列{an}既不是等差数列,也不是等比数列,是一个摆动数列.