在rt△abc中,角bac=90°,ab=ac,d为bc中点,e是ac上一点,点g在be上,连接dg并延长交AE于f,角
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 05:52:45
在rt△abc中,角bac=90°,ab=ac,d为bc中点,e是ac上一点,点g在be上,连接dg并延长交AE于f,角fge=45°
求好了BD*BC=BG*BE和AG与BE垂直,求当E是AC的中点的时候,EF:FD等于多少
求好了BD*BC=BG*BE和AG与BE垂直,求当E是AC的中点的时候,EF:FD等于多少
证明:连接DE,E是AC中点,D是BC中点,
∴DE//BA ,因为BA⊥AC,所以 DE⊥AC
设AB=2a AE=a
做CH⊥BE交BE的延长线于H(图可看上图)
∵∠AEG=∠CEH,∠AGE=∠CHE,AE=EC
∴△AEG≌△CEH(AAS)
∴CH=AG ∠GAE=∠HCE
∵∠BAE为直角
∴BE=√5a
∴AE=AB*AE/BE=(2/√5)a
∴CH=(2/√5)a
∵AG⊥BE,∠FGE=45
∴∠AGF=45=∠ECB
∵∠DFE=∠GAE+∠AGF=∠HCE+∠ECB;
∴∠DFE=∠BCH
又∵DE⊥AC ,CH⊥BE
∴△DEF∽△BHC
∴EF:DF=CH:BC=(2/√5)a:2√2a=1:√10=√10/10
∴DE//BA ,因为BA⊥AC,所以 DE⊥AC
设AB=2a AE=a
做CH⊥BE交BE的延长线于H(图可看上图)
∵∠AEG=∠CEH,∠AGE=∠CHE,AE=EC
∴△AEG≌△CEH(AAS)
∴CH=AG ∠GAE=∠HCE
∵∠BAE为直角
∴BE=√5a
∴AE=AB*AE/BE=(2/√5)a
∴CH=(2/√5)a
∵AG⊥BE,∠FGE=45
∴∠AGF=45=∠ECB
∵∠DFE=∠GAE+∠AGF=∠HCE+∠ECB;
∴∠DFE=∠BCH
又∵DE⊥AC ,CH⊥BE
∴△DEF∽△BHC
∴EF:DF=CH:BC=(2/√5)a:2√2a=1:√10=√10/10
如图直角三角形ABC中,角BAC=90度,AB=AC,D为BC中点,E为AC上一点,点G在BE上,连接DG,并延长交AE
如图,在Rt△ABC中,∠BAC=90,AB=AC,D为BC的中点,E为AC上一点,点G在BE上,连结DG并延长交AC于
在等腰直角三角形ABC中,角BAC=90度,D为BC的中点,E为AC上的一点,点G在BE上,连结DG并延长交AE于F,若
已知,如图,在直角三角形ABC中,角BAC=90度,AB=AC,D为BC的中点,E为AC上一点,点G在BE上,连接DG,
已知,如图,在直角三角形ABC中,角BAC=90度,AB=AC,D为BC的中点,E为AC上一点,AG⊥BE于G,延长DG
△ABC中AB<BC,D在AC上,CD=AB,E、F为AD、BC中点,连接EF并延长与BA的延长线交于G点,求AE=AG
在Rt△ABC中,∠BAC=90,D在CA的延长线上,DG垂直BC交AB、BC于点F、G,点E为DF的中点.求证:AE垂
在RT三角形ABC中,角BAC=90度,AB=AC,点D是AB的中点,AE垂直CD于H交BC于F,BE‖AC交AF的延长
在三角形ABC中AB=AC,D是BC边上中点E是BA延长线上一点F是AC上一点AE=AF,连接EF并延长交G,AD,EF
如图,在△ABC中,∠BAC=90°,AB=AC,D为AC的中点,DE⊥BC于点E,连接AE,F为BC延长线上一点,若∠
如图,直角三角形ABC中,角BAC=90度,AB=AC,D为BC中点,E为AC上一点,连结BE,AG⊥BE与G延长DG于
九年级几何证明题如图所示,在RT△ABC中,∠CBA=90°,D是AB延长线上一点,E在BC上,连接DE并延长交AC于点