如果对一切x的整数值,x的二次三项式ax2+bx+c的值都是平方数(即整数的平方),
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 12:37:36
如果对一切x的整数值,x的二次三项式ax2+bx+c的值都是平方数(即整数的平方),
证明:(1)2a,2b,c都是整数;
(2)a,b,c都是整数,并且c是平方数;
(3)反过来,如(2)成立,是否对一切x的整数值,x的二次三项式ax2+bx+c的值都是平方数?
证明:(1)2a,2b,c都是整数;
(2)a,b,c都是整数,并且c是平方数;
(3)反过来,如(2)成立,是否对一切x的整数值,x的二次三项式ax2+bx+c的值都是平方数?
证明:(1)∵对一切x的整数值,x的二次三项式ax2+bx+c的值都是平方数,
∴令x=0,a•02+b•0+c=c,
c是整数且是平方数,
令x=1,-1时a•12+b•1+c,a•(-1)2+b•(-1)+c是平方数,
∴可设a•12+b•1+c=m12①a•(-1)2+b•(-1)+c=n12
②c=k12(m1n1k1均为整数),
①-②得:2b=m12-n12,
∴2b为整数(整数相减为依然为整数),
由①得:2a=2m12-2b-2c,
∴2a为整数,
∴2a,2b,c都是整数;
(2)(1)中已证c是整数且是平方数,
令x=2,-2时,可设a•22+b•2+c=m22③a•(-2)2+b•(-2)+c=n22④c=k12(m2n2k1均为整数),
③-④得:4b=m22-n22=(m2+n2)(m2-n2)=2(2b),
∵2b为整数,
∴2(2b)为偶数,则m22-n22为偶数,
∴(m2+n2),(m2-n2)同奇同偶,
则可设(m2+n2)=2m,(m2-n2)=2n(m,n均为整数),
∴4b=2m•2n=4mn,
∴b=mn,
∴b为整数;
(3)令x=1,a=1,b=1,c=1,则ax2+bx+c=3,而3不是平方数.
∴不一定成立.
∴令x=0,a•02+b•0+c=c,
c是整数且是平方数,
令x=1,-1时a•12+b•1+c,a•(-1)2+b•(-1)+c是平方数,
∴可设a•12+b•1+c=m12①a•(-1)2+b•(-1)+c=n12
②c=k12(m1n1k1均为整数),
①-②得:2b=m12-n12,
∴2b为整数(整数相减为依然为整数),
由①得:2a=2m12-2b-2c,
∴2a为整数,
∴2a,2b,c都是整数;
(2)(1)中已证c是整数且是平方数,
令x=2,-2时,可设a•22+b•2+c=m22③a•(-2)2+b•(-2)+c=n22④c=k12(m2n2k1均为整数),
③-④得:4b=m22-n22=(m2+n2)(m2-n2)=2(2b),
∵2b为整数,
∴2(2b)为偶数,则m22-n22为偶数,
∴(m2+n2),(m2-n2)同奇同偶,
则可设(m2+n2)=2m,(m2-n2)=2n(m,n均为整数),
∴4b=2m•2n=4mn,
∴b=mn,
∴b为整数;
(3)令x=1,a=1,b=1,c=1,则ax2+bx+c=3,而3不是平方数.
∴不一定成立.
已知x的二次三项式ax^2+bx+c对于x的所有整数值,都表示平方数(整数的平方).证明:a、b都是整数
已知a,b,c都是整数,如果对任意整数x,代数式ax2+bx+c的值都能被3整除.证明;abc可被27整除
对于二次函数y=ax2+bx+c,如果当x取任意整数时,函数值y都是整数,那么我们把该函数的图象叫做整点抛物线(例如:y
已知二次函数f(x)=ax2+bx+c的系数a.b.c都是整数,并且f(19)=f(99)=1999,|c|〈1000则
已知M为整数若二次三项式X平方+MX+16能用十字相乘法分解试求出所有符合条件的M值并分解因式
(x-3)的平方+4(x-3)=-4 用因式分解法解答 ax的平方+bx+c= (二次三项式因式分解) ···~
y=ax2+bx+c(2是平方) a.b.c都是整数 当x=19和99时 y都等于1999 c的绝对值小于1000 求C
要使二次三项式x平方+mx+15,在整数范围内进行因式分解,那么整数m的取值有几个,分别是什么?
已知关于x的整系数的二次三项式ax2+bx+c,当x分别取1,3,6,8时,某同学算得这个二次三项式的值分别为1,5,2
对于二次函数y=ax^2+bx+c,如果当x取任意整数时,函数值y都是整数,那么我们把该函数的图象叫做整点抛物线(例如:
找出能使二次三项式x^2-ax-6在整数范围内可以因式分解的整数值a,并因式分解
已知关于x的二次三项式x的平方-2ax+8- a的平方是一个完全平方式,求实数a的值