如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 19:32:20
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
(1)证明:连接OA,
∵DA平分∠BDE,
∴∠BDA=∠EDA.
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠EDA,
∴OA∥CE.
∵AE⊥CE,
∴AE⊥OA.
∴AE是⊙O的切线.
(2) ∵BD是直径,
∴∠BCD=∠BAD=90°.
∵∠DBC=30°,∠BDC=60°,
∴∠BDE=120°.
∵DA平分∠BDE,
∴∠BDA=∠EDA=60°.
∴∠ABD=∠EAD=30°.
∵在Rt△AED中,∠AED=90°,∠EAD=30°,
∴AD=2DE.
∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,
∴BD=2AD=4DE.
∵DE的长是1cm,
∴BD的长是4cm.
∵DA平分∠BDE,
∴∠BDA=∠EDA.
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠EDA,
∴OA∥CE.
∵AE⊥CE,
∴AE⊥OA.
∴AE是⊙O的切线.
(2) ∵BD是直径,
∴∠BCD=∠BAD=90°.
∵∠DBC=30°,∠BDC=60°,
∴∠BDE=120°.
∵DA平分∠BDE,
∴∠BDA=∠EDA=60°.
∴∠ABD=∠EAD=30°.
∵在Rt△AED中,∠AED=90°,∠EAD=30°,
∴AD=2DE.
∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,
∴BD=2AD=4DE.
∵DE的长是1cm,
∴BD的长是4cm.
如图,四边形ABCD内接于圆O,BD是直径,AE垂直CD,垂足为E,DA平分∠BDE
如图,四边形ABCD内接于圆O,BD是直径,AE垂直CD,垂足为E,DA平分∠BDE,求证AE是圆O的切线
如图,四边形ABCD内接于圆o,BC是圆o的直径,AE垂直CD,垂足为E,DA平分角BDE.
如图,四边形ABCD内接于圆O,BD是圆O的直径,AE垂直CD,垂足为E,DA平分角BDE.1.求证AE是圆O的切线
如图,四边形ABCD内接于圆O,BD是圆O的直径,AE垂直于CD,垂足为E,DA平分角BDE,若AE=2,DE=1,求C
看图形证明圆的切线如图,四边形ABCD内接于圆心O.BD是圆心O的直径,AE垂直于CD,垂足为E,DA平分角BDE(1)
看图形证明切线如图,四边形ABCD内接于圆心O.BD是圆心O的直径,AE垂直于CD,垂足为E,DA平分角BDE(1)求证
如图,四边形ABCD内接于圆o,BC是圆o的直径,AE垂直CD,垂足为E,DA平分角BDE.,主要是第2题若AE=2,D
如图,四边形ABCD内接于⊙O,CD∥AB,且AB是⊙O的直径,AE⊥CD交CD延长线于点E.
如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O
如图,四边形ABCD内接于圆心O,CD平行AB且AB是圆心O的直径,AE垂直CD延长线于点E,求证:AE就圆O的切线
如图,四边形ABCD是圆O的内接四边形,AC为直径,弧BD=弧AD,DE垂直于BC,垂足为E. (1)判断直线ED与圆O