作业帮 > 数学 > 作业

边长为整数的直角三角形,若其两直角边长是方程x2-(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 07:21:14
边长为整数的直角三角形,若其两直角边长是方程x2-(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.
边长为整数的直角三角形,若其两直角边长是方程x2-(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.
设直角边为a,b,(a<b)则a+b=k+2,ab=4k,
因方程的根为整数,故其判别式为平方数,
设△=(k+2)2-16k=n2⇒(k-6+n)(k-6-n)=1×32=2×16=4×8,
∵k-6+n>k-6-n,


k−6+n=32
k−6−n=1或

k−6+n=16
k−6−n=2或

k−6+n=8
k−6−n=4,
解得k1=
45
2(不是整数,舍去),k2=15,k3=12,
当k2=15时,a+b=17,ab=60⇒a=5,b=12,c=13,
当k3=12时,a+b=14,ab=48⇒a=6,b=8,c=10.
∴当k=15时,三角形三边的长为:5,12,13.
当k=12时,三角形三边的长为:6,8,10.