已知,三角形ABC内接于圆O,点D在OC的延长线上
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/19 08:47:14
已知,三角形ABC内接于圆O,点D在OC的延长线上
已知,三角形ABC内接于圆O,点D在OC的延长线上,sinB=二分之一.角CAD=30°,《1》求证:AD是圆O的切线 《2》若OD垂直于AB,BC=5,求AD的长
我明白了,
美死你,
肯定谁先答给谁的分嘛
已知,三角形ABC内接于圆O,点D在OC的延长线上,sinB=二分之一.角CAD=30°,《1》求证:AD是圆O的切线 《2》若OD垂直于AB,BC=5,求AD的长
我明白了,
美死你,
肯定谁先答给谁的分嘛
(1)连接OA,∵∠B=30°(已知)
∴∠AOC=60°(同弧所对的圆心角是圆周角的二倍)
∵OA=OC(同圆或等圆的半径相等)
∴三角形OAC是正三角形(有一个角是60度的等腰三角形是等边三角形)
∵∠OAC=60°(等边三角形的每个角都等于60度)
∵∠CAD=30°(已知)
∴∠OAD=90°(角的和)
∴AD是圆O的切线.(经过半径外端,且垂直于半径的直线是圆的切线)
(2)∵OD⊥AB(已知)
∴OD平分AB(垂径定理:垂直于弦的直径平分弦,且平分这条弦所对的两条弧)
∴弧AC=弧BC
∴AC=BC=5
∴由(1)可知OA=5
∴OD=2×OA=10
∴AD=5√3.
∴∠AOC=60°(同弧所对的圆心角是圆周角的二倍)
∵OA=OC(同圆或等圆的半径相等)
∴三角形OAC是正三角形(有一个角是60度的等腰三角形是等边三角形)
∵∠OAC=60°(等边三角形的每个角都等于60度)
∵∠CAD=30°(已知)
∴∠OAD=90°(角的和)
∴AD是圆O的切线.(经过半径外端,且垂直于半径的直线是圆的切线)
(2)∵OD⊥AB(已知)
∴OD平分AB(垂径定理:垂直于弦的直径平分弦,且平分这条弦所对的两条弧)
∴弧AC=弧BC
∴AC=BC=5
∴由(1)可知OA=5
∴OD=2×OA=10
∴AD=5√3.
如图所示,△ABC内接于圆O,点D在OC的延长线上,sinB
如图,已知△ABC内接于圆O,点D在OC的延长线上,sinB=1/2,∠D=30度
如图,已知三角形ABC内接于圆O,点D在OC的延长线上,∠ABC=∠CAD (1)判断直线AD与圆O的位置关系,说明理由
三角形ABC内接于圆O,点D在OC的延长线上,SIN B=1/2.∠CAD等于30度1.求证AD是圆O的切线2.OD⊥A
如图,已知△ABC内接于圆O,点D在OC的延长线上,sinB=1/2,∠D=30度 求证AD是圆
如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=12,∠CAD=30°.
如图,△ABC内接于⊙O,点D在OC的延长线上,∠B=30°,∠CAD=30°
如图,已知△ABC内 接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.(1)AD是⊙O
(2010•锦州)如图,已知:△ABC内接于⊙O,点D在OC的延长线上,∠B=∠D=30°.
如图,已知:△ABC内接与圆O,点D在OC的延长线上,∠B=∠D=30°1)AD是⊙O的切线吗?为什么?
如图,已知△ABC内接于⊙O,点D在OC的延长线上,sinB=1/2,∠CAD=30°.若OD⊥AB,BC=5,求AD的
已知,三角形ABC内接于圆O,AD是圆O直径,点E、F分别在AB、AC的延长线上,EF交圆O于M、N,交AD与点H,H是