证明函数f(x)在区间(a,b)上是增函数的充要条件是对任意的x,x+h∈(a,b),且h≠0有f(x+h)-f(x)÷
若函数y=f(x)在区间(a,b)内可导,且x0€(a,b)则 lim f(x0)-f(x0-h)/h h->0 的值为
设f(x)是定义在(-a,a)上 的任意函数证明g(x)=f(X)+f(-x).是偶函数,h(x)=f(X)-f(-x)
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1且对任意的a,b∈R有f(a+b)=f(a)*f(b
设函数f(x)·g(x)在区间(a,b)内单调递增,证明函数h(x)=max{f(x),g(x)}与h(x)=min{f
定义在R上的函数y=f(x),f(0)≠0,当x<0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)×f
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)f(
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意a、b∈R,有f(a+b)=f(a)·f(
函数增减性问题设函数f(x)·g(x)在区间(a,b)内单调递增,证明函数h(x)=max{f(x),g(x)}与H(x
设函数f(x)在x0处可导,则对任意常数a,b,lim(h→0) [f(x0+ah)-f(x0-bh)]/h =
函数f(x)=logax(a>0且a≠1),h(x)=|f(x-a)|-1,讨论函数h(x)在区间[2,4]上的最小值
函数证明题已知函数y=f(x)的定义域为R,且对于任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0是,f
已知函数y=f(x)的定义域是R,且对任意a,b都有f(a+b)=f(a)+f(b).证明函数y=f(x)R上的减函数