在菱形ABCD和菱形BEFG中,点A,B,F在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=6
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 20:52:16
在菱形ABCD和菱形BEFG中,点A,B,F在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及PG/PC的值,并证明.(可以延长Gp交DA于点H,连接CH,CG构造全等三角形,经过推理使问题得到解决)
网上还有一题与此相似但不一样的,所以请看清题目,
网上还有一题与此相似但不一样的,所以请看清题目,
证明:如图,延长GP交AD于点H,连接CH,CG.
∵P是线段DF的中点,
∴FP=DP,
∵AD∥FG,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵四边形ABCD是菱形,
∴CD=CB,∠HDC=∠ABC=60°,
∵∠ABC=∠BEF=60°,菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,
∴∠GBC=60°,
∴∠HDC=∠GBC,
∵四边形BEFG是菱形,
∴GF=GB,
∴HD=GB,
∴△HDC≌△GBC,
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,
∴∠HCG=120°,
∵CH=CG,PH=PG,
∴PG⊥PC,∠GCP=∠HCP=60°,
∴ PG/PC=根号3
∵P是线段DF的中点,
∴FP=DP,
∵AD∥FG,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵四边形ABCD是菱形,
∴CD=CB,∠HDC=∠ABC=60°,
∵∠ABC=∠BEF=60°,菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,
∴∠GBC=60°,
∴∠HDC=∠GBC,
∵四边形BEFG是菱形,
∴GF=GB,
∴HD=GB,
∴△HDC≌△GBC,
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,
∴∠HCG=120°,
∵CH=CG,PH=PG,
∴PG⊥PC,∠GCP=∠HCP=60°,
∴ PG/PC=根号3
在菱形ABCD中和菱形BEFG中,点A.B.E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=
请阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,
请阅读下列材料:问题:如图,在正方形ABCD和平行四边形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接
如图1示,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,G在BC上,连接DF,
如图,在边长为a的菱形ABCD中,∠ABC=60°,PC⊥面ABCD,E,F是PA和AB的中点.
已知四棱锥p-abcd中,底面abcd为菱形pa⊥平面abcd,∠abc=60度,e,f分别是bc,pc的中点
如图,在边长为4a的菱形ABCD中,E是BC边中点,P是对角线BD上一动点,角ABC=60度,求PE+PC的最小值.
如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,E、F分别是PB、CD的中点,且PB=PC
在边长为a的菱形ABCD中,∠ABC=120°,PC⊥面ABCD,且PC=a,E为PA的中点.
如图,菱形ABCD中∠ABC=120点E、F分别是这AD,CD上的两个动点.若E、F满足∠BEF=60°,则△BEF是否
如图,在菱形ABCD中,点E,F分别是BC,AD上的点.BE=DF,连接AE,AF.
如图,P-ABCD的底面是边长为a的菱形,∠ABC=60°,PC⊥平面ABCD,PC=a,E为PA中点