作业帮 > 数学 > 作业

已知a+b=lg32+lg35+3lg2lg5,则a3+b3+3ab=______

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 17:00:51
已知a+b=lg32+lg35+3lg2lg5,则a3+b3+3ab=______
已知a+b=lg32+lg35+3lg2lg5,则a3+b3+3ab=______
你的题目看得我快死了,算了好久都觉得题目有问题,原来是
a+b=lg^3 2+lg^3 5+3lg2lg5
=lg^3 2+lg^3 5+3lg2lg5d*lg10
=lg^3 2+lg^3 5+3lg2lg5*[lg(2*5)]
=lg^3 2+lg^3 5+3lg2lg5*(lg2+lg5)
=(lg2+lg5)^2
=1
所以a^3+b^3+3ab
=a^3+b^3+3ab*1
=a^3+b^3+3ab*(a+b)
=(a+b)^3=1
所以a^3+b^3+3ab=1