在平面直角坐标系xOy中,抛物线y=-m−14x2+5m4x+m2-3m+2与x轴的交点分别为原点O和点A,点B(2,n
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/14 10:34:42
在平面直角坐标系xOy中,抛物线y=-
m−1 |
4 |
(1)∵抛物线y=-
m−1
4x2+
5m
4x+m2-3m+2经过原点,
∴m2-3m+2=0,
解得m1=1,m2=2,
由题意知m≠1,
∴m=2,
∴抛物线的解析式为y=-
1
4x2+
5
2x,
∵点B(2,n)在抛物线y=-
1
4x2+
5
2x上,
∴n=4,
∴B点的坐标为(2,4).
(2)设直线OB的解析式为y=k1x,
求得直线OB的解析式为y=2x,
∵A点是抛物线与x轴的一个交点,可求得A点的坐标为(10,0),
设P点的坐标为(a,0),
则E点的坐标为(a,2a),
根据题意作等腰直角三角形PCD,
如图1,可求得点C的坐标为(3a,2a),
由C点在抛物线上,
得:2a=-
1
4´(3a)2+
5
2´3a,
即
9
4a2-
11
2a=0,
解得a1=
22
9,a2=0(舍去),
∴OP=
22
9.
依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,
由点A(10,0),点B(2,4),求得直线AB的解析式为y=-
1
2x+5,
当P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:
第一种情况:CD与NQ在同一条直线上.
如图2所示.可证△DPQ为等腰直角三角形.此时OP、DP、AQ的长可依次表示为t、4t、2t个单位.
∴PQ=DP=4t,
∴t+4t+2t=10,
∴t=
10
7.
第二种情况:PC与MN在同一条直线上.如图3所示.可证△PQM为等腰直角三
角形.此时OP、AQ的长可依次表示为t、2t个单位.
∴OQ=10-2t,
∵F点在直线AB上,
∴FQ=t,
∴MQ=2t,
∴PQ=MQ=CQ=2t,
∴t+2t+2t=10,
∴t=2.
第三种情况:点P、Q重合时,PD、QM在同一条直线上,如图4所示.此时OP、
AQ的长可依次表示为t、2t个单位.
∴t+2t=10,
∴t=
10
3.
综上,符合题意的t值分别为
10
7,2,
10
3
m−1
4x2+
5m
4x+m2-3m+2经过原点,
∴m2-3m+2=0,
解得m1=1,m2=2,
由题意知m≠1,
∴m=2,
∴抛物线的解析式为y=-
1
4x2+
5
2x,
∵点B(2,n)在抛物线y=-
1
4x2+
5
2x上,
∴n=4,
∴B点的坐标为(2,4).
(2)设直线OB的解析式为y=k1x,
求得直线OB的解析式为y=2x,
∵A点是抛物线与x轴的一个交点,可求得A点的坐标为(10,0),
设P点的坐标为(a,0),
则E点的坐标为(a,2a),
根据题意作等腰直角三角形PCD,
如图1,可求得点C的坐标为(3a,2a),
由C点在抛物线上,
得:2a=-
1
4´(3a)2+
5
2´3a,
即
9
4a2-
11
2a=0,
解得a1=
22
9,a2=0(舍去),
∴OP=
22
9.
依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,
由点A(10,0),点B(2,4),求得直线AB的解析式为y=-
1
2x+5,
当P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:
第一种情况:CD与NQ在同一条直线上.
如图2所示.可证△DPQ为等腰直角三角形.此时OP、DP、AQ的长可依次表示为t、4t、2t个单位.
∴PQ=DP=4t,
∴t+4t+2t=10,
∴t=
10
7.
第二种情况:PC与MN在同一条直线上.如图3所示.可证△PQM为等腰直角三
角形.此时OP、AQ的长可依次表示为t、2t个单位.
∴OQ=10-2t,
∵F点在直线AB上,
∴FQ=t,
∴MQ=2t,
∴PQ=MQ=CQ=2t,
∴t+2t+2t=10,
∴t=2.
第三种情况:点P、Q重合时,PD、QM在同一条直线上,如图4所示.此时OP、
AQ的长可依次表示为t、2t个单位.
∴t+2t=10,
∴t=
10
3.
综上,符合题意的t值分别为
10
7,2,
10
3
在平面直角坐标系xOy中,抛物线y=-x2+x+m2-3m+2与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线
如图,在平面直角坐标系xOy中,抛物线y=1/4 (x-m)2-1/4 m2+m的顶点为A,与y轴的交点为B,连结AB,
已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的圆P与x轴,y轴分别相切于点M和点N,点F从点M出发,
在平面直角坐标系中,抛物线y=2x²/3m-2√3x/3(m>0)的顶点为P,与x轴异于原点O的另一点交点为Q
(2013•东城区一模)在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-9与x轴交于A,B两点(点A在点B的左侧
如图,在平面直角坐标系xoy中,抛物线y=1/18x2-4/9x-10与x轴的交点为点A
在直角坐标系xOy中,O为坐标原点,直线AB平行直线y=x,且与x轴交于点A(-3,0),与y轴交于B点,点M、N在x轴
一.在平面直角坐标系xOy中,抛物线y=-1/2X2+bx+c与x轴交于A、B两点(点A在点B的左侧且A,B在原点两侧)
在平面直角坐标系xoy中,抛物线y=1\18x2-4\9x-10与x轴的交点为点B,过点B作x轴,.2为二次方
在平面直角坐标系xoy中,抛物线y=-x2+4x与x轴的正半轴交于点A,其顶点为M,点P是该抛物线上位于A、M两点之间的
如图1,在平面直角坐标系中,O为坐标原点,直线l:y=- 1/2x+m与x、y轴的正半轴分别相交于点A、B,过点C(-
在平面直角坐标系xOy中,已知抛物线y=-x的平方+2x+3与x轴交于A、B两点,点M在这条抛上,点P在y轴上,如果以P