线性代数,已知方阵R(A)=n-1,Ap=0且p不为0,证明Ax=p必有解.
线性代数中给定一个方阵A 如何求出一个可逆矩阵P和对角阵x(这个符号打不出来)使得 p^(-1)*AP=x
2道线性代数证明题1.A为N阶方阵,且A^2=A,证明r(A)+r(A-E)=n.2.A为N阶方阵,且A^2=e,证明r
(线性代数)设A,B为n阶方阵,证明:r(AB)>=r(A)+r(B)-n
线性代数中秩的证明设A为n阶方阵,且A^2=A,若R(A)=r,证明:R(A-E)=n-r..其中E为n阶单位阵
线性代数证明题设A、B都是n阶方阵,且AB=0,证明R(A)+R(B)小于等于n.老师上课说了,是r(AB)大于等于R(
线性代数.已知A是m*n矩阵,B是n*p矩阵,r(B)=n,AB=0.证明A=0
线性代数与解析几何设N阶方阵A的N个特征值互异,B是N阶可逆阵.证明AB=BA(充分必要条件)存在可逆阵P使得P逆AP和
设A,B为n阶实对称方阵,且A正定,则存在实可逆矩阵P,使 P' AP=E,同时P' BP=diag(λ1,…,λn).
1. 设A为n阶对称矩阵,P为n阶可逆矩阵,证明B=(P^T)AP也是对称矩阵,且R(A)=R(B)
线性代数,设A是n阶方阵,且(A+E)^2=0,证明A可逆.
已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对∀x∈R恒成立.若p且q为假,p或
设A,B均为n阶方阵,且AB=0,证明r(A)=n-1时,r(A*)=1