为什么说“若函数z=f(x,y)在点P(x,y)沿任意方向的方向导数都存在,也不能保证z=f(x,y)在这点存在偏导数.
二元函数z=f(x,y)在点(x0,y0)处偏导数存在是f(x,y)在该点连续的什么条件?
二元函数z=|x-y|在原点(0,0)处沿任何方向的方向导数是否都存在?
函数z=f(x,y)在某点存在偏导数Fx与Fy是它在该点存在微分的什么条件啊?
z=f(x,y)在点(x0,y0)处的两个偏导数存在,则在该点
“fx(x0,y0),fy(x0,y0)都存在”是“f(x,y)在(x0,y0)点沿任意方向的导数存在”的什么条件?
微积分偏导数对于一个二元函数Z=f(X,Y),在点P(m,n)处它的三阶偏导数均存在,且其中f_xyx和f_xxy在点P
为什么函数f(x,y)在点(x0,y0)处偏导数存在,是函数f(x,y)在该点连续的既不充分也不必要条件?
高数有关方向导数问题在椭球面2x^2+2y^2+z^2=1上求一点使函数f(x,y,z)=x^2+y^2+z^2在该点沿
z=f(x,y)的两个偏导数在点(x,y)存在且连续是f(x,y)在该点可微分的充分条件.为什么不是充分必要条件?
已知方程 F[x(y,z),y(x,z),z(x,y)]=0, 且函数偏导数存在 ,证明 dz/dx*dx/dy*dy/
函数Z=f(x,y)的两个偏导数在点(x,y)连续是f(x,y)在该点可微分的什么条件啊?
描述二元函数Z=f(x,y)在 (0,0)点邻域内有定义,连续,偏导数存在,可微四个条件间关系