an=2n-5,bn=an/2^n,设bn的前n项和为tn,证明;1/4大于等于tn小于1
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 17:26:00
an=2n-5,bn=an/2^n,设bn的前n项和为tn,证明;1/4大于等于tn小于1
题目有问题
bn=an/2^n
bn=(2n-5)/2^n
Tn=b1+b2+……+bn
=(2-5)/2+(2*2-5)/2^2+…+(2n-5)/2^n…….1
2Tn=(2-5)+(2*2-5)/2+(2*3-5)/2^2+……(2n-5)/2^(n-1) .2
2式-1式得
Tn=-3+2/2+2/2^2+……+2/2^(n-1)-(2n-5)/2^n
=-3-(2n-5)/2^n+1+1/2+1/2^2+……+1/2^(n-2))
=-3-(2n-5)/2^n+[1-(1/2)^(n-1)]/(1-1/2)
=-3-(2n-5)/2^n+2[1-(1/2)^(n-1)]
=-3-(2n-5)/2^n+2-2*(1/2)^(n-1)
=-3-(2n-5)/2^n+2-4/2^n
=-1-(2n-5)/2^n-4/2^n
=-1-(2n-5+4)/2^n
=-1-(2n-1)/2^n
bn=an/2^n
bn=(2n-5)/2^n
Tn=b1+b2+……+bn
=(2-5)/2+(2*2-5)/2^2+…+(2n-5)/2^n…….1
2Tn=(2-5)+(2*2-5)/2+(2*3-5)/2^2+……(2n-5)/2^(n-1) .2
2式-1式得
Tn=-3+2/2+2/2^2+……+2/2^(n-1)-(2n-5)/2^n
=-3-(2n-5)/2^n+1+1/2+1/2^2+……+1/2^(n-2))
=-3-(2n-5)/2^n+[1-(1/2)^(n-1)]/(1-1/2)
=-3-(2n-5)/2^n+2[1-(1/2)^(n-1)]
=-3-(2n-5)/2^n+2-2*(1/2)^(n-1)
=-3-(2n-5)/2^n+2-4/2^n
=-1-(2n-5)/2^n-4/2^n
=-1-(2n-5+4)/2^n
=-1-(2n-1)/2^n
设bn=(an+1/an)^2求数列bn的前n项和Tn
an=3*2^(n-1),设bn=n/an求数列bn的前n项和Tn
设公比大于0的数列an的前n项和是Sn,a=1,S4=5S2,数列bn的前n项合为Tn,满足b1=1,Tn=n^2bn,
已知数列an的前n项和Sn=n^2,设bn=an/3n,记数列bn的前n项和为Tn,求证Tn=1-(n+1)/3^n
等差数列{An},{Bn}的前n项和为Sn与Tn,若Sn/Tn=2n/3n+1,则An/Bn的值是?
等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,求an/bn的表达式
等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1 ,则an/bn=
等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn
两个等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,求an/bn.
已知数列an=4n-2和bn=2/4^(n-1),设Cn=an/bn,求数列{Cn}的前n项和Tn
等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,则an/bn等于多少?
Sn=n^2,设bn=an/3/,记数列{bn}的前n项和为Tn