f(x)在[a,b]单增 1.f(x)导数在在(a,b)>=0 2.f(x)导数在在(a,b)内的任意区间(α,β)恒不
若在区间(a,b)内,函数f(x)的一阶导数f'(x)>0,二阶导数f''(x)
f(x)在(a,b)的导数
二次函数区间最值题1.若函数f(x)在区间(a ,b)内函数的导数为正,且f(b)≤0,则函数f(x)在(a,b)内有(
设函数f(x)在区间(a,b)内二阶可导,f(x)的二阶导数大于等于0,证明:任意x,x0属于(a,
导数题 函数f(x)的导函数为f′(x) 若f(x)在区间(a ,b)内有f′(x)>0.且f(a)≥0 f(x)则在(
设函数f(x)在区间(a.b)内具有二阶导数.如果x∈(a.b)时恒有f(x)>0则f(x)在(a.b)内的凹凸性
设函数f(x)在区间(a.b)内具有二阶导数.如果x∈(a.b)时恒有f十一次方(x)>0则f(x)在(a.b)内的凹凸
设f(x)在区间[a,b]上具有二阶导数,且f'(a)f'(b)>0试证明
f(x)在[a,b]上可导,f(x)的导数是否在[a,b]上连续
设函数f(x)在闭区间[a,b]上具有二阶导数,且f"(x)>0,证明∫(a,b)f(x)dx>f(
设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,
设f(x)在[a,b]上有连续的导数,且f(x)不恒等于0,f(a)=f(b)=0,证明∫(a,b)xf(x)f'(x)