作业帮 > 数学 > 作业

椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为3/5

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 05:13:10
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为3/5
两焦点分别为F1,F2,点M(Xo,Yo)是椭圆C上一点,且三角形F1F2M的周长为16,设线段MO(O为坐标原点)与圆O:x^2+y^2=r^2交于点N,且线段MN长度的最小值为15/4,求椭圆C以及圆O的方程.
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为3/5
周长为16
2a+2c=16
c/a=3/5
a=5 b=4 c=3
椭圆C的方程
x^2/25+y^2/16=1
b-r>=15/4