△ABC中,BE⊥AC,AD⊥BC,P在AC上,且AP=AD,过P作PQ平行CB交AB于Q,求证:PQ=BE
在三角形ABC中,AD垂直BC于D,BE垂直AC于E,P为AC上一点,且AP=AD,过点P作PQ//BC交AB于点Q,求
在正三角形ABC中,点D、E分别在BC、AC上,且AE=CD,AD和BE交于P,BQ⊥AD于Q,求证:BP=2PQ
如图,在△ABC中,AB=AC=BC ,AE=CD,AD丶BE相交于点P,BQ⊥于=AD于Q.求证:BP=2PQ
如图,在△ABC中,AB=AC=BC,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:BP=2PQ
如图,在△ABC中,AD,BE,CF是它的三条角平分线且交于点P,过点P作PQ⊥AC于点Q,试判断图中∠APE与∠CPQ
已知平行四边形ABCD中,AB=1,E是射线DC上一点,直线AC、BE交于点P,过点P作PQ平行AB,PQ交直线AD于点
在△ABC中,BE,CD是角平分线,且P是DE的中点.PQ⊥BC于Q,PM⊥AB于M,PN⊥AC于N,求证PQ=PM+P
三角形ABC是等边三角形,D、E分别在边BC,AC上,且CD=AE,AD与BE相交于P,BQ⊥AD于Q.求证BP=2PQ
M是Rt△ABC斜边AB的中点,P、Q分别在AC、CB上,且PM⊥QM.求证PQ方=AP方+BQ方
已知:在△ABC中,AC=BC,∠ACB=90°,AD=AC,P是CD上任意一点,PQ⊥AB于Q,PR⊥AC于R.求证:
如图,在△ABC中,已知AB=BC=CA,AE=CD,AD与BE交于点P,BQ⊥AD于点Q,求证:BP=2PQ.
在等边△ABC中,D,E分别是BC,AC上的点,且AE=CD,AD交BE于点F,BQ⊥AD于点Q.试证明:BP=2PQ