酋矩阵的性质问题U为m*m维酋矩阵,T为m*n维一般复数矩阵,满不满足 Rank(U*T)=Rank(T),如果满足简略
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 20:01:01
酋矩阵的性质问题
U为m*m维酋矩阵,T为m*n维一般复数矩阵,
满不满足 Rank(U*T)=Rank(T),如果满足简略说明下,证明亦可!
酋矩阵的定义为:U的共轭矩阵乘以U = U乘以 U的共轭矩阵=m维单位矩阵
U为m*m维酋矩阵,T为m*n维一般复数矩阵,
满不满足 Rank(U*T)=Rank(T),如果满足简略说明下,证明亦可!
酋矩阵的定义为:U的共轭矩阵乘以U = U乘以 U的共轭矩阵=m维单位矩阵
满足 Rank(U*T)=Rank(T),
【 对 任意 A,B∈C(n*n)
rank(AB)≤max{rankA,rankB}
如果没有给出这个定理,可简单从线性表出关系中推导:AB=(β1,β2,...,βn)=A(α1,α2,...,αn),
或根据 Bx=0的解 必满足 ABx=0 的解 推出】
证明:
rank(UT)≤rankT=rank(ET)=rank(U'(UT))≤rank(UT)
--> rank(UT)=rankT
【 对 任意 A,B∈C(n*n)
rank(AB)≤max{rankA,rankB}
如果没有给出这个定理,可简单从线性表出关系中推导:AB=(β1,β2,...,βn)=A(α1,α2,...,αn),
或根据 Bx=0的解 必满足 ABx=0 的解 推出】
证明:
rank(UT)≤rankT=rank(ET)=rank(U'(UT))≤rank(UT)
--> rank(UT)=rankT
设A,B,C分别为m*n,n*s,s*t矩阵,证明rank(B)+rank(ABC)>rank(AB)+rank(BC)
设A是m*n的实矩阵,且rank(A)=n,证明A^T A是正定矩阵
矩阵As*n,Bn*m,证明rank(AB)>=rank(A)+rank(B)-n
设A、B分别是s*n,n*m矩阵,证明:rank(ab)=rank(a)+rank(b)-n
证明:对于任意复数矩阵有 【其中T为转置,为矩阵取共轭】rank为求矩阵的秩
证明 设A,B分别是s*n,n*m矩阵,如果AB=0,则rank(A)+rank(B)
设A为n阶可逆矩阵,U,V为为n*m矩阵,Em为m阶单位矩阵,若秩(V'A-1U+Em)
设A为s*t阶矩阵,B是m*n阶矩阵,如果ACB有意义,则C应是什么阶矩阵
线性代数一题设A是m×n阶矩阵,C是n的可逆矩阵,矩阵A的秩为r,矩阵B=ACC的秩为t,则下列结论正确的是() A:>
若设u为n维单位列向量,试证明豪斯霍德矩阵H=E-2uu^t,是正交矩阵
设A为m×n实矩阵,证明r(A^T A)=r(A)
设A为n阶矩阵,若已知|A|=m,求|2|A|A^t|,