三重积分∫∫∫zdv,积分区域由x^2 y^2 z^2≥z和x^2 y^2 z^2<2z围成
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 10:02:50
三重积分∫∫∫zdv,积分区域由x^2 y^2 z^2≥z和x^2 y^2 z^2<2z围成
如题用球面积分我做出来的是∫(0-2π)dθ∫(0-2/π)dφ∫(cosφ-2cosφ)(ρ^3sinφcosφ)dρ请问哪里错了...为什么和直角坐标求出来的结果不一样...顺便求柱面坐标的方法
如题用球面积分我做出来的是∫(0-2π)dθ∫(0-2/π)dφ∫(cosφ-2cosφ)(ρ^3sinφcosφ)dρ请问哪里错了...为什么和直角坐标求出来的结果不一样...顺便求柱面坐标的方法
你球坐标的式子没错啊,可能是直角坐标的式子列错了呢?
球坐标:
小球体:r² = rcosφ ==> r = cosφ
大球体:r² = 2rcosφ ==> r = 2cosφ
∫∫∫Ω z dV
= ∫(0→2π) dθ ∫(0→π/2) sinφ dφ ∫(0→2cosφ) rcosφ * r² dr
- ∫(0→2π) dθ ∫(0→π/2) sinφ dφ ∫(0→cosφ) rcosφ * r² dr
= 4π/3 - π/12
= 5π/4
柱坐标:
{ r² + z² = z { r² + z² = 2z
{ r² + (z - 1/2)² = 1/4 { r² + (z - 1)² = 1
∫∫∫Ω z dV
= ∫(0→2π) dθ ∫(0→1) r dr ∫(1 - √(1 - r²)→1 + √(1 - r²)) z dz
- ∫(0→2π) dθ ∫(0→1/2) r dr ∫((1/2)(1 - √(1 - 4r²))→(1/2)(1 + √(1 + 4r²))) z dz
= 4π/3 - π/12
= 5π/4
直角坐标:
{ x² + y² + z² = z ==> x² + y² + (z - 1/2)² = (1/2)²
{ x² + y² + z² = 2z ==> x² + y² + (z - 1)² = 1
∫∫∫Ω z dV
= ∫(- 1→1) dx ∫(- √(1 - x²)→√(1 - x²) dy ∫(1 - √(1 - x² - y²)→1 + √(1 - x² - y²)) z dz
- ∫(- 1/2→1/2) dx ∫(- √(1/4 - x²)→√(1/4 - x²)) dy ∫(1/2 - √(1/4 - x² - y²)→1/2 + √(1/4 - x² - y²)) z dz
= 4π/3 - π/12
= 5π/4
球坐标:
小球体:r² = rcosφ ==> r = cosφ
大球体:r² = 2rcosφ ==> r = 2cosφ
∫∫∫Ω z dV
= ∫(0→2π) dθ ∫(0→π/2) sinφ dφ ∫(0→2cosφ) rcosφ * r² dr
- ∫(0→2π) dθ ∫(0→π/2) sinφ dφ ∫(0→cosφ) rcosφ * r² dr
= 4π/3 - π/12
= 5π/4
柱坐标:
{ r² + z² = z { r² + z² = 2z
{ r² + (z - 1/2)² = 1/4 { r² + (z - 1)² = 1
∫∫∫Ω z dV
= ∫(0→2π) dθ ∫(0→1) r dr ∫(1 - √(1 - r²)→1 + √(1 - r²)) z dz
- ∫(0→2π) dθ ∫(0→1/2) r dr ∫((1/2)(1 - √(1 - 4r²))→(1/2)(1 + √(1 + 4r²))) z dz
= 4π/3 - π/12
= 5π/4
直角坐标:
{ x² + y² + z² = z ==> x² + y² + (z - 1/2)² = (1/2)²
{ x² + y² + z² = 2z ==> x² + y² + (z - 1)² = 1
∫∫∫Ω z dV
= ∫(- 1→1) dx ∫(- √(1 - x²)→√(1 - x²) dy ∫(1 - √(1 - x² - y²)→1 + √(1 - x² - y²)) z dz
- ∫(- 1/2→1/2) dx ∫(- √(1/4 - x²)→√(1/4 - x²)) dy ∫(1/2 - √(1/4 - x² - y²)→1/2 + √(1/4 - x² - y²)) z dz
= 4π/3 - π/12
= 5π/4
计算三重积分∫∫∫zdv,其中Ω由z=-√(x^2+y^2)与z=-1围成的闭区域
计算三重积分∫∫∫zdv,曲面z=√(2-x^2-y^2)及z=x^2+y^2围成的闭区域
计算三重积分 ∫∫∫zdv,其中Ω是由曲面x^2+y^2=2z与平面z=2平面所围成的闭区域.
计算三重积分题计算∫∫∫zdV,其中积分空间由曲面2z=x^2+y^2,(x^2+y^2)^2=x^2-y^2及平面z=
利用柱面坐标系求三重积分z=x^2+y^2 z=2y.求∫∫∫Zdv
区域由z=x∧2+y ∧2 和 z=9围成 求三重积分(x+y+z)dv
计算三重积分 ∫∫∫Zdv,其中Ω是由上球面Z=根号(4-x^2-y^2 )及拉面x^2+y^2=1.平面Z=0所围成的
求三重积分∫dv,积分区域是由z=x^2+y^2,z=1/2*(x^2+y^2),x+y=±1,x-y=±1围成
求三重积分想[(y^2+x^2)z+3]在积分区域x^2+y^2+z^2
求三重积分∫∫∫(x^2+y^2)dxdydz 曲面是x^2+y^2=z^2 和z=2围成的区域
设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy
计算三重积分∫∫∫zdxdydz,其中Ω由z=x^2+y^2与z=4围成的闭区域.