作业帮 > 数学 > 作业

求第二型曲面积分∫∫s xdydz+ydzdx+zdxdy,其中S是椭球面x2/a2+y2/b2+z2/c2=1外侧

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 09:51:08
求第二型曲面积分∫∫s xdydz+ydzdx+zdxdy,其中S是椭球面x2/a2+y2/b2+z2/c2=1外侧
求第二型曲面积分∫∫s xdydz+ydzdx+zdxdy,其中S是椭球面x2/a2+y2/b2+z2/c2=1外侧
设P=x.Q=y,R=z
由高斯公式得到
∫∫s xdydz+ydzdx+zdxdy
=∫∫∫(P'x+Q'y+R'z)dV=3∫∫∫dV (转变成了一个在椭球内的三次积分)
=3*(V椭球)
=3*(4/3)πabc
=4πabc