标准椭圆,长轴在x轴上离心率e=根号3除以2,p(0,3/2)到椭圆上的点最远距离为根号7,求这椭圆方程.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 22:29:08
标准椭圆,长轴在x轴上离心率e=根号3除以2,p(0,3/2)到椭圆上的点最远距离为根号7,求这椭圆方程.
e=根号3除以2
c=√3/2*a,b^2=a^2-c^2=a^2-3a^2/4=a^2/4
长轴在x轴上,所以,可设椭圆方程为:x^2/a^2+4y^2/a^2=1
椭圆上的点(asinr,acosr/2)到p的距离平方
=a^2sin^2r+(acosr-3)^2/4
=-1/4*(3a^2cos^2r+6acosr-9-4a^2)
=-[3(acosr+1)^2-12-4a^2]/4
所以,acosr+1=0时,距离平方最远=(12+4a^2)/4=3+a^2
3+a^2=7
a^2=4
椭圆方程为:x^2/4+y^2=1
c=√3/2*a,b^2=a^2-c^2=a^2-3a^2/4=a^2/4
长轴在x轴上,所以,可设椭圆方程为:x^2/a^2+4y^2/a^2=1
椭圆上的点(asinr,acosr/2)到p的距离平方
=a^2sin^2r+(acosr-3)^2/4
=-1/4*(3a^2cos^2r+6acosr-9-4a^2)
=-[3(acosr+1)^2-12-4a^2]/4
所以,acosr+1=0时,距离平方最远=(12+4a^2)/4=3+a^2
3+a^2=7
a^2=4
椭圆方程为:x^2/4+y^2=1
设椭圆的中心在原点,焦点在X轴上,离心率e=根号3/2,已知点p(0,3/2)到这个椭圆上点最远距离为根号7,求方程
设椭圆的中心在原点,长轴在x轴上,离心率e=根号3/2.已知点P(0,3/2)到这个椭圆上的点的最远距离为根号7,求这个
椭圆的中心在原点,焦点在X轴上,离心率e=根号3/2,已知点p(0,3/2)到这个椭圆上点最远距离为根号7,
设椭圆中心在原点上,焦点在x轴上,离心率为 2分之根号3,已知A(0,2分之3)到这个椭圆的点的最远距离好似根号7,求这
设椭圆的中心在原点,焦点在x轴上,离心率e=根号3/2,已知点A(0,3/2)到这个椭圆上的点的最远距离为根号15
设椭圆的中心在原点,焦点在x轴上,离心率e=32.已知点P(0,32)到这个椭圆上的点的最远距离为7,求这个椭圆方程.
设椭圆的中心在原点,焦点在x轴上,离心率e=Γ3^2.已知点P(0.3^2)到这个椭圆上的点的最远距离为Γ7.求这...
设椭圆的中心在原点,焦点在x轴上,e=(根号3)/2,已知这个椭圆上的点到点p(0,3/2)得最远距离是根号7,求这个点
设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点P(0,)到这个椭圆上的点的最远距离是,求这个椭圆的方程,并求椭圆上到
已知椭圆的中心在原点,焦点在X轴上,离心率e=(根号3)/2,且过点P(2,2倍根号2),求椭圆的标准方程.
椭圆焦点在y轴上,离心率e=根号3/2,且焦点到椭圆的最短距离为2-根号3.求椭圆的方程及长轴的长,焦距
已知焦点在X轴上的椭圆离心率是√3/2,且点(0,3/2)距椭圆上点最远距离为√7,求椭圆的方程