…如图,在直三棱柱ABC-A1B1C1中,AA1=4,AC=BC=2,∠ACB=90度
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 14:01:14
…如图,在直三棱柱ABC-A1B1C1中,AA1=4,AC=BC=2,∠ACB=90度
如图,在直三棱柱ABC-A1B1C1中,AA1=4,AC=BC=2,∠ACB=90度
(1)求点B到平面AB1C的距离.
(2)求直线B1B与平面AB1C所成角的正切值.
(3)求以AB1C与AB1B为半平面的二面角的正切值.
如图,在直三棱柱ABC-A1B1C1中,AA1=4,AC=BC=2,∠ACB=90度
(1)求点B到平面AB1C的距离.
(2)求直线B1B与平面AB1C所成角的正切值.
(3)求以AB1C与AB1B为半平面的二面角的正切值.
(1)过点B做BD⊥B1C,交B1C于D
∠ACB=90度,所以AC⊥BC,直三棱柱的性质B1B⊥平面ABC,
所以B1B⊥AC
因此AC⊥平面BB1C
所以AC⊥BD
BD⊥B1C
所以BD⊥平面AB1C
BD即为所求距离
B1B=A1A=4,BC=2
B1C=√4x4+2x2=2√5
1/2xBDxB1C=1/2xBCxB1B
BD=2x4/(2√5)=4√5/5
(2)直线B1B是斜线,BD⊥平面AB1C
∠BB1C即直线B1B与平面AB1C所成角
tg∠BB1C=BC/B1B=2/4=1/2
(3)过点B做BE⊥AB1,交点为E,连接DE
因为BD⊥平面AB1C
所以BD⊥AB1
又因为BE⊥AB1
所以AB1⊥平面BED
所以AB1⊥ED
∠DEB即为所求二面角
AB=√(2x2+2x2)=2√2
AB1=√(8+16)=2√6
BC=2√2x4/(2√6)=4/√3
DE=√(16/3-16/5)=4√(2/15)
tg∠DCB=BD/DE=(4/√5)/(4√(2/15)=√6/2
∠ACB=90度,所以AC⊥BC,直三棱柱的性质B1B⊥平面ABC,
所以B1B⊥AC
因此AC⊥平面BB1C
所以AC⊥BD
BD⊥B1C
所以BD⊥平面AB1C
BD即为所求距离
B1B=A1A=4,BC=2
B1C=√4x4+2x2=2√5
1/2xBDxB1C=1/2xBCxB1B
BD=2x4/(2√5)=4√5/5
(2)直线B1B是斜线,BD⊥平面AB1C
∠BB1C即直线B1B与平面AB1C所成角
tg∠BB1C=BC/B1B=2/4=1/2
(3)过点B做BE⊥AB1,交点为E,连接DE
因为BD⊥平面AB1C
所以BD⊥AB1
又因为BE⊥AB1
所以AB1⊥平面BED
所以AB1⊥ED
∠DEB即为所求二面角
AB=√(2x2+2x2)=2√2
AB1=√(8+16)=2√6
BC=2√2x4/(2√6)=4/√3
DE=√(16/3-16/5)=4√(2/15)
tg∠DCB=BD/DE=(4/√5)/(4√(2/15)=√6/2
如图,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,AA1=2,D 是A1B1中点.
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=根号2,侧棱AA1=1,侧面AA1B1B的
在直三棱柱ABC-A1B1C1中(即侧棱垂直于底面 的三棱柱),角ACB=90,AA1=BC=2AC=2
已知直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,AC=BC=2√2,∠ACB=90°,AA1=4,
如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°.E为BB1的中点,D点在AB上且DE=3
(2013?宁波二模)如图,在直三棱柱ABC-A1B1C1中,△ABC是等腰直角三角形,∠ACB=90°,侧棱AA1=2
如图,直三棱柱(侧棱垂直于底面的三棱柱)ABC-A1B1C1中,已知AC=BC=AA1=a,∠ACB=90°,F是棱BB
如图,在直三棱柱ABC-A1B1C1中,CC1=AC=BC,∠ACB=90°,P是AA1的中点,Q是AB的中点.
(2014•重庆二模)如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=3,AC=BC=2,D为AB中点,
(2006•南汇区二模)如图,直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°.E为BB1的中点
如图3 直三棱柱ABC-A1B1C1中AC=BC=1 ∠ACB=90° AA1=√2 (根号二)D是A1B1中点
如图,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,E是棱CC1上的动点,F是AB的中点,AC=BC=2,AA1