作业帮 > 数学 > 作业

用分部积分法求下列不定积分 1)∫xsin2xdx 2)∫xlnxdx 3)∫arccosxdx 4)∫xarctanx

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 23:09:12
用分部积分法求下列不定积分 1)∫xsin2xdx 2)∫xlnxdx 3)∫arccosxdx 4)∫xarctanxdx
用分部积分法求下列不定积分
1)∫xsin2xdx
2)∫xlnxdx
3)∫arccosxdx
4)∫xarctanxdx
用分部积分法求下列不定积分 1)∫xsin2xdx 2)∫xlnxdx 3)∫arccosxdx 4)∫xarctanx
2)3)4)答案同楼上,
1)∫xsin2xdx=(-1/2)∫xdcos2x=(-1/2)xcos2x+(1/2)∫cos2xdx=(-1/2)xcos2x+(1/4)sin2x+C
2)∫xlnxdx=(1/2)∫lnxdx^2=(1/2)x^2lnx-(1/2)∫xdx=(1/2)x^2lnx-(1/4)x^2+C
3)∫arccosxdx=xarccosx-∫-xdx/√(1-x^2)
=xarctanx-(1/2)d(1-x^2)/√(1-x^2)
=xarccosx -√(1-x^2)+C
4)∫xarctanxdx=(1/2)∫arctanxdx^2 =(1/2)x^2arctanx-(1/2)∫x^2dx/(1+x^2)
=(1/2)x^2arctanx-(1/2)x+(1/2)∫dx/(1+x^2)
=(1/2)x^2arctnax-(x/2)+(1/2)arctanx+C