∵M1M2=4MM2,∴M1M2=4(OM2-
∵M1M2=4MM2,∴M1M2=4(OM2-
已知M1(0,1,2),M2(1,-1,0),求向量M1M2.线段M1M2中点,直线2x+y-1+z=0通过向量M1M2
若有点M1(4,3)和M2(2,1) 点M分有向线段向量M1M2 的比λ=-2,则点M的坐标为
电子秤的M1m2是什么意思?
已知两点M1(2,2,√2),M2(1,3,0),计算向量M1M2的方向角,答案a=2π/3,b=π/3,r=3π/4,
在圆周运动里,T=2πr/v,可以直接求出运动周期,在万有引力中有,G*M1M2/(R*R)=4π^2mr/T^2,这里
复数z1,z2分别对应复平面内的点M1,M2,且/z1+z2/=/z1-z2/,线段M1M2的中点M对应的复数为4+3i
若有点M1(4,3)和M2(2,-1),点M分有向线段向量M1M2的比P=2,点M的坐标为好多
已知点M(6,2)和M2(1,7).直线y=mx-7与线段M1M2的交点M分有向线段M1M2的比为3:2,则m的值为(
已知点M1(2,3,3),M2(-2,4,1),计算向量M1M2的模,方向余弦
设M1(1,-2,-3),m2(2,-4,-1),求与向量m1m2平行的单位向量
1.对于万有引力公式F=G·m1m2/r² ,下列说法中正确的是( )