如图ABC是圆O的一条折弦,BC>AB,D是ABC弧的中点,DE⊥BC,垂足为E,求证;若连结DC,DB,则DC^2-D
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 14:33:16
如图ABC是圆O的一条折弦,BC>AB,D是ABC弧的中点,DE⊥BC,垂足为E,求证;若连结DC,DB,则DC^2-DB^2=AB*BC
连DA,AC,DC,作DF=DB,F在BC上,就有等腰三角形DFB.
在图中有Rt三角形DEC和Rt三角形DEB,由勾股定理得
CD^2=CE^2+DE^2,DB^2=DE^2+BE^2,
DC^2-DB^2=CE^2+DE^2-DE^2-BE^2=CE^2-BE^2
=(CE-BE)(CE+BE)=(CE-BE)*BC=BC*AB
所以只要证AB=CE-BE.
在圆内有圆周角∠DFB=∠DBC=∠DAC,∠DCB=∠DAB,∠BCA=∠BDA,
∵D是ABC弧的中点,∴CD=AD,∠DCA=∠DAC,
∠DCA=∠DCB+∠BCA=∠DAC=∠DBC=DFB=∠DCB+∠CDF,∴∠BCA=∠CDF,
∴∠BDA=∠CDF,又∵CD=AD,DF=DB,∴三角形CDF≌三角形ADB,
∴CF=CE-EF=CE-BE=AB.
在图中有Rt三角形DEC和Rt三角形DEB,由勾股定理得
CD^2=CE^2+DE^2,DB^2=DE^2+BE^2,
DC^2-DB^2=CE^2+DE^2-DE^2-BE^2=CE^2-BE^2
=(CE-BE)(CE+BE)=(CE-BE)*BC=BC*AB
所以只要证AB=CE-BE.
在圆内有圆周角∠DFB=∠DBC=∠DAC,∠DCB=∠DAB,∠BCA=∠BDA,
∵D是ABC弧的中点,∴CD=AD,∠DCA=∠DAC,
∠DCA=∠DCB+∠BCA=∠DAC=∠DBC=DFB=∠DCB+∠CDF,∴∠BCA=∠CDF,
∴∠BDA=∠CDF,又∵CD=AD,DF=DB,∴三角形CDF≌三角形ADB,
∴CF=CE-EF=CE-BE=AB.
如图,过△ABC的顶点A作AE⊥BC,垂足为E.点D是射线AE上一动点(点D不与顶点A重合),连结DB、DC.已知BC=
如图,以等腰三角形ABC的底边BC直径的圆O分别交两腰于D,E.连接DE求证1 DE平行BC,2 若D是AB中点则ABC
如图,D为△ABC内一点,且DB=DC,AB=AC,AD的延长线交BC于E点,求证:AE⊥BC.
如图,D为△ABC内一点,且DB=DC,AB=AC,AD的延长线交BC于E点,.求证AE⊥BC
如图,在△ABC中,点D在BC上,且DC=AC,CE⊥AD,垂足为E,点F是AB的中点.求证:EF‖BC
如图,Rt△ABC中,∠ABC=90°,AB=BC=4,以AB为直径作圆O交AC边于点D,E是边BC的中点,连结DE.
如图,在△ABC中,O为重心,D,E,F分别是BC,AC,AB的中点,化简向量AB+FE+DC
已知:如图,△ABC中,点D在BC上且DC=AC,CE⊥AD于点E,点F是AB的中点连接DE.求证:ef∥BC
如图,已经△ABC,以AC为直径的圆O交AB于点D,点E为弧AB中点,连结CE交AB于点F,且BF=BC,求证BF是切线
如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O角AC于点E,点D是BC边的中点,连结DE.
如图,AB为圆O的直径,AC为弦D为弧BC的中点,DE⊥AC于E,DE=6,CE=2.求证:1DE是圆O的切线 2求圆o
如图,在△ABC的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD.连接DC,DC2=DE•DA是否成立?若成立