一阶全微分形式不变性是什么意思?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 19:49:35
一阶全微分形式不变性是什么意思?
如题
如题
设y=f(u),u=g(x),如果u=g(x)对x可微,y=f(u)对相应的u可微,则y=f[g(x)]对x可微,为
dy = f[g(x)]’dx = f’(u)g’(x)dx = f’(u)du
可以知道,无论u是自变量还是别的自变量的可微函数,
微分形式dy=f’(u)du保持不变.
这就是一阶全微分的形式不变性.
通俗的说就是 当z=z(u,v)可微 u=u(x,y) v=v(x,y)也可微 时 复合函数 z=z(u(x,y),v(x,y))可微 且 z的全微分形式不变 既 dz=(z对u求偏导)*du+(z对v求偏导)*dv=(z对x求偏导)*dx+(z对y求偏导)*dy
dy = f[g(x)]’dx = f’(u)g’(x)dx = f’(u)du
可以知道,无论u是自变量还是别的自变量的可微函数,
微分形式dy=f’(u)du保持不变.
这就是一阶全微分的形式不变性.
通俗的说就是 当z=z(u,v)可微 u=u(x,y) v=v(x,y)也可微 时 复合函数 z=z(u(x,y),v(x,y))可微 且 z的全微分形式不变 既 dz=(z对u求偏导)*du+(z对v求偏导)*dv=(z对x求偏导)*dx+(z对y求偏导)*dy
u=x∧(y+z2),求一阶偏导数及全微分(利用全微分的形式不变性)
关于微分的形式不变性?一阶微分形式不变我可以理解,但是高阶微分为什么没有这种性质?中间变量不是
求函数的微分或导数!1,设ysinx-cos(x-y)=0,求dy解利用一阶微分的形式的不变性求得d(ysinx)-dc
请问谁会解这道高数题?已知e^z-xyz=0,利用全微分形式不变性求出z对x和z对y的偏导数
设函数z=arctanuv u=xe^y v=y^2 ,试利用全微分形式的不变性计算 Zx' Zy'
已知函数y=f[φ(x²)+Ψ²(x)]且f,φ,Ψ均可微,利用微分形式不变性,求函数微分dy
u =x∧y +z2,求一阶偏导数及全微分
u =x∧y z2,求一阶偏导数及全微分
二元函数全微分的问题设[f(x)-e^x]sinydx-f(x)cosydy是一个二元函数的全微分,f(x)具有一阶连续
求解一阶拟线性偏微分方程组!
微分是什么意思?
微分是什么意思