已知球O的表面积是4π,A B C三点都在球面上,且OA OB OC 两两所成的角都为π/3,则四面体OABC的体积是
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 18:55:01
已知球O的表面积是4π,A B C三点都在球面上,且OA OB OC 两两所成的角都为π/3,则四面体OABC的体积是
已知球O的表面积是4π,A B C三点都在球面上,且OA OB OC 两两所成的角都为π/3,则四面体OABC的体积是
已知球O的表面积是4π,A B C三点都在球面上,且OA OB OC 两两所成的角都为π/3,则四面体OABC的体积是
球表面积=4πR^2=4π,
则球半径R=1,
四面体棱OA=OB=OC=R=1,
因OA OB OC 两两所成的角都为π/3,故以三角形ABC为底,三个侧棱为1,三个侧面三角形是正三角形,底面ABC也是正三角形,
作OH⊥底面ABC,垂足H,则H是底三角形的外(重、内、垂)心,连结AH,交延长交BC于D,AD=√3/2,AH=2AD/3=√3/3,
OH^2=OA^2-AH^2,
OH=√6/3,
S△ABC=(√3/4)*AB^2=√3/4,
VO-ABC=S△ABC*OH/3=(√3/4)* √6/3/3=√2/12.
四面体OABC的体积是√2/12.
则球半径R=1,
四面体棱OA=OB=OC=R=1,
因OA OB OC 两两所成的角都为π/3,故以三角形ABC为底,三个侧棱为1,三个侧面三角形是正三角形,底面ABC也是正三角形,
作OH⊥底面ABC,垂足H,则H是底三角形的外(重、内、垂)心,连结AH,交延长交BC于D,AD=√3/2,AH=2AD/3=√3/3,
OH^2=OA^2-AH^2,
OH=√6/3,
S△ABC=(√3/4)*AB^2=√3/4,
VO-ABC=S△ABC*OH/3=(√3/4)* √6/3/3=√2/12.
四面体OABC的体积是√2/12.
在四面体OABC中,棱OA、OB、OC两两互相垂直,且OA=1,OB =2,OC=3,G为三角形ABC 的重心,则向量O
在四面体OABC中,棱OA,OB,OC两两互相垂直,且OA=1,OB=2,OC=3,G为三角形ABC的重心,则向量OG*
已知OA、OB是圆O的两条半径,C、D为OA、OB上的两点.且OC=OD,求证AD=BC
在三棱锥O-ABC中,三条棱OA,OB,OC两两互相垂直,且OA=OB=OC,M是AB边的中点,则OM与平面ABC所成角
若O、A、B、C为空间四点,且OA、OB、OC两两垂直,OA=OB=OC=a,P点到O、A、B、C的距离相等,则OP等于
一个正四面体的顶点都在一个球面上,已知这个球的表面积为3π,则正四面体的边长 ___ .
已知正三棱锥P-ABC,点P A B C都在半径为R的球面上,若PA,PB,PC两两互相垂直,且PA=2,则球的表面积为
正四面体的顶点都在表面积为36π的球面上,求正四面体的体积
已知正四面体OABC的棱长等于1,M,N分别是棱OA,BC的中点,设向量OA=向量a向量OB=向量b,向量OC=向量c
如图,已知OA、OB是圆O的两条半径,C、D分别在OA、OB上且AD=BD求证AD=BD
(1)O,A,B,C是平面上的四点,已知A,B,C三点共线且向量OA=5/4向量OB+X向量OC,则X=()
空间几何向量已知三棱锥P-A B C的外接球O的半径为1,且满足向量OA+OB+OC=0则正三棱锥P-A B C的体积?