作业帮 > 综合 > 作业

大家好,谁能介绍一下光纤光谱仪的发展前景?

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/09/24 15:19:28
大家好,谁能介绍一下光纤光谱仪的发展前景?
大家好,谁能介绍一下光纤光谱仪的发展前景?
由于光谱仪的结构特点以及光谱仪广泛的应用领域,在微小光谱仪的研究中可以采用多种方法和多种思路.比如改善AOTF的波长覆盖范围、波长分辨率和通光本领,可以使它能应用于各种光谱化学分析,而用这样的元件可以制成结构简单、性能良好、成本低廉的光谱仪,或者使用分辨率较高的中阶梯光栅,与一般棱镜结合,进行交叉色散,可以得到分辨率很高的二维光谱图,所以可以根据微小光谱仪的本身特点和工作环境要求来进行设计.微加工技术的发展以及MEMS、MOEMS的出现使许多学科技术的研究都朝着微惊讶及微小型化的方向发展,更需要一些特殊条件下(如外星、地下、深海、危险区等)的工作仪器.光谱仪在未来的新世纪必将出现高度智能化和微型化的趋势,微型光谱仪可以说是微型仪器的一种.微型仪器实际上是具有仪器功能的MEMS/MOEMS产品,是MEMES技术的实际应用.微型仪器的核心技术之一是微型传感技术,采用各种新原理、新概念的各类传感器是实现微型仪器的关键和必要条件.现在仪器朝着微小型化、智能化的发展使我们又面临一个新的考验,也是我们发展的一个机遇.
具体可以参考几家比较好的光谱仪制造厂家,如海洋光学,复享仪器等等.
再问: 光子晶体能带的研究有没有什么好的办法?
再答: 平面波展开法是比较常用的一种方法,它的基本思想是:将电磁场以平面波的形式展开,可以将麦克斯韦议程组化成一个本征议程,求解该方程的本征值便得到传播的光子的本征频率。这种方法的不足之处是当光子晶体结构复杂或处理有缺陷的体系时,可能因为计算能力的限制而不能计算或者难以准确计算。而且如果介电常数不是常数而是随频率变化,就没有一个确定的本征方程形式,这种情况下根本无法求解。   传输矩阵法是将磁场在实空间的格点位置展开,将麦克斯韦方程组化成传输矩阵形式,同样变成本征值求解问题。传输矩阵表示一层(面)格点的场强与紧邻的另一层(面)格点场强的关系,它假设在构成的空间中在同一个格点层(面)上有相同的态和相同的频率,这样可以利用麦克斯韦方程组将场从一个位置外推到整个晶体空间。这种方法对介电常数随频率变化我金属系统特别有效,而且由于传输矩阵小,矩阵元少,运算量小,同时在计算传输光谱时也是十分方便的。但是用该方法求解电磁场的分布较为麻烦,效率不是很高,因此对于光子晶体物理特性的理解没有太大的帮助。   有限差分时域法是电磁场数值计算的经典方法之一。在这里将一个单位原跑划分成许多网状小格,列出网上每个结点的有限差分议程,利用布里渊区边界的周斯条件,同样将麦克斯韦方程组化成矩阵形 光子晶体式的特征方程,这个矩阵是准对角化的,其中只有少量的一些非零矩阵元,计算最小。但是由于有限差分时域法没有考虑晶格的具体形状,在遇到特殊形状晶格的光子晶体时,很难精确求解。   光子晶体光子晶体   散射矩阵法假定光子晶体由各向同性的介质组成,其中充满了各种开头和尺寸的没有重叠的光学散射中心。通过对所有的散射中心的散射场应用傅立叶-贝塞尔展开来求解亥姆霍兹方程,从而计算出在光子晶体中传输的场分布。应用这种方法对于求解场分布和传输光谱都是可行的,但是由于这种方法需要较长的运算时间,在有些情形下实际上是不可行的。   实际理论分析中,还有很多其他的方法,如:有限元法、N阶法等。这些方法各有优缺点,在应用时要根据实际场合合理地选用。在光子晶体的研究中这些分析方法是十分重要的,由于光子晶体的制备非常困难,通常是先应用这些方法分析得出光子晶体的一些特性,再由试验来验证这些结论。
再问: 国内外光纤光谱仪做得好的公司有哪些啊?能否介绍下?
再答: 这位仁兄啊,,上面提到了,国外的比如美国海洋光学,荷兰爱万提斯,国内的就不是很清楚啦,但我们之前学校里面用的是复享科技的,各方面还不错哦,希望能帮到你。