已知:四边形ABCD中,角A=角B=90°,DE,CE分别平分角ADC,角BCD,求证AE=BE
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 20:47:49
已知:四边形ABCD中,角A=角B=90°,DE,CE分别平分角ADC,角BCD,求证AE=BE
证明:
∵DE,CE分别平分角ADC,角BCD
∴∠ADE=∠EDC=1/2∠ADC
∠BCE=∠DCE=1/2∠BCD
∵四边形ABCD中,角A=角B=90°
∴ AD//BC
∠ADC+∠BCD=180°
从而∠EDC+∠DCE=90°
∴∠DEC=90°
在直角 ⊿EBC与直角 ⊿DEC中
∵∠DEC=∠B=90°
∠BCE=∠DCE
∴⊿EBC ∽ ⊿DEC(相似)
∴EB:DE=EC:DC
EB= DE*EC/DC
同理可得⊿DAE ∽ ⊿DEC(相似)
AE:EC=DE:DC
AE= DE*EC/DC
从而证得 :AE=BE
∵DE,CE分别平分角ADC,角BCD
∴∠ADE=∠EDC=1/2∠ADC
∠BCE=∠DCE=1/2∠BCD
∵四边形ABCD中,角A=角B=90°
∴ AD//BC
∠ADC+∠BCD=180°
从而∠EDC+∠DCE=90°
∴∠DEC=90°
在直角 ⊿EBC与直角 ⊿DEC中
∵∠DEC=∠B=90°
∠BCE=∠DCE
∴⊿EBC ∽ ⊿DEC(相似)
∴EB:DE=EC:DC
EB= DE*EC/DC
同理可得⊿DAE ∽ ⊿DEC(相似)
AE:EC=DE:DC
AE= DE*EC/DC
从而证得 :AE=BE
已知:四边形ABCD中∠A=∠B=90°,DE,CE分别平分∠ADC,∠BCD求证:AE=BE
已知在四边形ABCD中,DE、CE分别平分∠ADC、∠BCD.试证明:∠DEC=1/2(∠A+∠B)
如图,直角梯形ABCD中,AD平行BC,角B等于90°,E为AB中点,DE平分角ADC,求证,CE平分角BCD.
已知:如图,四边形ABCD中,角B等于角D等于90°AE、CF分别平分角BAD、角BCD.求证AE平行于CF
如图,四边形ABCD中,AE平分角BAD,DE平分角ADC,且角ABC=80度,角BCD=70度,求角AED.
梯形ABCD中,AB//DC,点E在BC上,且AE,DE分别平分角BAD和角ADC.说明BE=CE.
直角梯形ABCD中,角A=角B=90°,AD‖BC,E为AB上一点,DE平分角ADC,CE平分角BCD,以AB为直径的圆
如图,四边形ABcD中,AB平行于Dc,BE、cE分别平分角ABc、角BcD,且点E在AD上,求证:Bc=AB+Dc
如图,直角梯形ABCD中,DE,CE分别是角ADC和角BCD的平分线AD//BC,角A=角B=90度!求证AD+BC=C
梯形ABCD中,DC平行AB,E是BC上一点,AE平分角BAD,DE平分角ADC(1)求证CE=BE(2)求证AD=CD
如图所示,直角梯形ABCD中,角A=角B=90度,AD平行于BC,E为AB上一点,DE平分角ADC,CE平分角BCD,A
已知cb垂直ab,ce平分角bcd,de平分角adc,角cde+角dce=90度.求证:AB平行CD