f(x)=|e^x-bx|(3)当b>0时,判断函数y=f(x)在区间(0,2)上是否存在极大值
设定义在R上的函数f(x)=ax^3+bx^2+cx当x=-√2/2时f(x)取得极大值√2/3并且函数y=f导数(x)
已知f(x)=1/3x+1/2ax+2bx+c(a,b,c∈R),且函数f(x)在区间(0,1)上取得极大值,
已知函数y=f(x)是定义在R上的奇函数,当x大于等于0时f(x)=2x-x的平方.问是否存在这样的正数a,b,当x属于
设函数f(x)=[e^(x-m)]-x,其中m属于R,当m大于1时,判断函数在区间[0,m]内是否存在零点?
设函数【f(x)=e^(x-m)-x】其中m∈R,当m>1时判断函数f(x)在区间(0,m)内是否有零点.
已知函数f(x)=-x^3+ax^2+bx在区间(-2,1)内,当x= - 1时取得极小值,当x=2\3时取得极大值,(
已知函数f(x)=-x^3+ax^2+bx在区间(-2,1)内,当x= - 1时取得极小值,当x=2\3时取得极大值,求
已知函数y=f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x+x2,若存在正数a,b,使得当x∈[a,b]时,f
对于定义在集合D上的函数y=f(x),若f(x)在D上具有单调性,且存在区间[a,b]⊆D,使当x∈[a,b]时,f(x
已知函数f(x)=2/3x^3+ax^2+bx+c 当f(x)在x∈(0,1)取得极大值且在x∈(1,2)取得极小值,设
对于函数y=f(x),若存在区间[a,b],当x∈[a,b]时,f(x)的值域为[ka,kb](k>0),则称y=f(x
函数 f(x)=x*sinx在区间(0,+∞)上的有界性?当x->+∞时,f(x)是否为无穷大量?