{an}成等比数列,a1+a2+a3+……+a104=12,1/a1+1/a2……1/a104=6,a1a2a3……a1
设a1,a2,a3,…,an(n∈N*)都是正数,且a1a2a3•…an=1,试用数学归纳法证明:a1+a2+a3+…+
已知a1,a2,a3…an∈R+,且a1a2a3…an=1,求证(1+a1)(1+a2)…(1+an)≥2^n
证明恒等式a1/a2(a1+a2)+a2/a3(a2+a3)+……+an/a1(an+a1)=a2/a1(a1+a2)+
若等比数列{an}满足a1+a2=3,a3+a4=12,则a1+a2+a3+……+an=
(高考)已知等比数列{an},a2>a3=1,则使不等式(a1-1/a1)+(a2-1/a2)+…+(an-1/an)>
已知等比数列{an}中,a2>a3=1,则使不等式(a1-1/a1)+(a2-1/a2)+…+(an-1/an)≥0成立
已知等比数列﹛an﹜中,a2>a3=1,则使不等式(a1-1/a1)+(a2-1/a2)+…(an+1/an)≥0成立的
已知等比数列{an}中,a1+a2+a3=7,a1a2a3=8,则1/a1+1/a2+1/a3=
设{an}为等比数列,Tn=a1+2a2+…+(n-1)an-1+nan,已知an>0,a1=1,a2+a3=6.
在等比数列{an}中,已知a1+a2+a3+…+an=1-(1/2)^n,则a1²+a2²+a3
如果数列an满足a1,a2/a1,a3/a2……an/an+1,…是首项为1,公比为2的等比数列,则a6=
已知{an}等比数列,an>0,a1+a2+a3+……a8=4,a1a2……a8=16,则(1/a1)+(1/a2)+…